GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (25)
  • 1
    In: Vaccines, MDPI AG, Vol. 8, No. 1 ( 2020-02-19), p. 92-
    Abstract: Objectives: To evaluate a policy-based intervention to increase seasonal-influenza-vaccination coverage in healthcare workers in Xining, a city in Western China. Methods: From October 2018 to March 2019, we implemented a free vaccination policy in healthcare workers in Xining. A face-to-face interview with the head of the infection control department and an online survey for medical staff in four tertiary medical facilities was conducted to understand both the implementation of the free policy and influenza vaccination coverage. Possible factors for influenza vaccination among healthcare workers (physician, nurses working on the front-line, HCWs) were investigated by multivariate-logistic regression. Results: Coverage in two hospitals that implemented the free vaccination policy was 30.5% and 25.9%, respectively, which was statistically different to hospitals that did not implement the free policy (7.2% and 8.7%, respectively) (χ2 = 332.56, p 〈 0.0001). Among vaccinated healthcare workers, 65.5% and 48.6% reported their main reasons for vaccination were a convenient vaccination service and awareness of the free vaccination policy. The reasons for not being vaccinated among the 3389 unvaccinated healthcare workers included: the inconvenient vaccination service (33.8%), believing vaccination was unnecessary (29.7%), concerns about adverse reactions to the vaccine (28.8%), and having to pay for the vaccine (25.6%). Conclusions: Implementing the free vaccination policy, combined with improving the accessibility of the vaccination service, increased seasonal-influenza vaccination-coverage in healthcare workers in Xining.
    Type of Medium: Online Resource
    ISSN: 2076-393X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2703319-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Inorganics, MDPI AG, Vol. 11, No. 4 ( 2023-03-30), p. 145-
    Abstract: Platinum (Pt) drugs have developed rapidly in clinical applications because of their broad and highly effective antitumor effects. In recent years, with the rapid development of immunotherapy, Pt-based antitumor agents have gained new challenges and opportunities. Since the discovery of their pharmacological effects in immunotherapy and tumor microenvironment regulation, research into Pt drugs has progressed to multi-ligand and multi-functional Pt precursors and their own shortcomings have been further highlighted. With the development of antitumor immunotherapy and the rise of combination therapy, the development of Pt-based drugs has started to move in the direction of multi-targeting, nanocarrier modification, immunotherapy and photodynamic therapy. In this paper, we first overview the recent applications of Pt-based drugs in antitumor inorganic chemistry, with a focus on summarizing the application of Pt-based drugs and their precursors in the anticancer immune response. The paper also provides a reasonable outlook on the future development of Pt-based drugs from the chemical and immunological perspectives, relying on the existing content and problems of Pt-based drug development. On the basis of the gathered information, joint multidisciplinary programs on implementing comprehensive immune analyses for the future development of novel anticancer metal compounds should be initiated.
    Type of Medium: Online Resource
    ISSN: 2304-6740
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2735043-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Sustainability Vol. 15, No. 17 ( 2023-09-04), p. 13249-
    In: Sustainability, MDPI AG, Vol. 15, No. 17 ( 2023-09-04), p. 13249-
    Abstract: Soilborne pathogen infections are increasingly reported globally in recent years. Infectious agents have contaminated most of seasonal frozen zone and have been found in permafrost due to the effects of intensified human activities on global warming. Therefore, in regard to sustainable agriculture, it is particularly important to assess the environmental behavior of those pathogens in frozen soils. Due to high pathogenicity and low infection threshold, E. coli O157:H7 (EcO157) is a worldwide public health concern, and recent studies have focused more on its fate in the environment. The survival of this serotype in a large variety of environmental media under temperature above 0 °C has been investigated, while its persistence in frozen soils has received less attention. In this study, we collected soils with different textures from a seasonally frozen zone in northeast China and investigated the persistence of EcO157 in soils at freezing temperatures (−5 °C and −15 °C) and moisture content (30% and 60% water holding capacity (WHC)) of the soils. By fitting the survival data with a Weibull model, we obtained three parameters: first log reduction time (δ in days), survival curve shape parameters (p), and monthly average reduction in EcO157 (MAR, log·gdw−1·mon−1). The results showed that temperature has a major impact on persistence, while moisture content has less effect on the survival of EcO157. Further multi-variable analysis revealed that the physical and chemical properties (e.g., sand fraction) of soil play an important role in survival. Certain bacterial groups are significantly correlated with the survival of EcO157 in frozen soils at −5 °C but not for the ones incubated at −15 °C. Our data could provide background data to evaluate the health risk associated with EcO157. The results could be helpful to improve sustainable soil practices and to develop regulations and policies aiming to achieve sustainable agriculture.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Nanomaterials Vol. 10, No. 7 ( 2020-07-16), p. 1385-
    In: Nanomaterials, MDPI AG, Vol. 10, No. 7 ( 2020-07-16), p. 1385-
    Abstract: A Bragg-mirror-assisted terahertz (THz) high-contrast and broadband plasmonic interferometer is proposed and theoretically investigated for potential sensing applications. The central microslit couples the incident THz wave into unidirectional surface plasmon polaritons (SPPs) waves travelling to the bilateral Bragg gratings, where they are totally reflected over a wide wavelength range back towards the microslit. The properties of interference between the SPPs waves and transmitted THz wave are highly dependent on the surrounding material, offering a flexible approach for the realization of refractive index (RI) detection. The systematic study reveals that the proposed interferometric sensor possesses wavelength sensitivity as high as 167 μm RIU−1 (RIU: RI unit). More importantly, based on the intensity interrogation method, an ultrahigh Figure-of-Merit (FoM) of 18,750% RIU−1, surpassing that of previous plasmonic sensors, is obtained due to the high-contrast of interference pattern. The results also demonstrated that the proposed sensors are also quite robust against the oblique illumination. It is foreseen the proposed configuration may open up new horizons in developing THz plasmonic sensing platforms and next-generation integrated THz circuits.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Forests, MDPI AG, Vol. 9, No. 8 ( 2018-08-13), p. 493-
    Abstract: As a basal measure of soil bioengineering, the living brush mattress has been widely applied in riparian ecological protection forest construction. The living brush mattress shows favorable protective effects on riverbanks. However, there are few reports on the root structure and the soil strengthening benefit of the living brush mattress. The present work reports a series of experiments on root morphology and soil shear strength enhancement at the temporal and spatial scales. The object of the study is 24 living brush mattress trees constructed with Salix alba L. ‘Tristis’ (LBS hereafter). Traditional root morphology and mechanical measurement methods were used to collect the parameters. The results showed that the root systems of LBS had the characteristics of symmetry and upslope growth. The roots were mainly distributed in a cylindrical region of the soil (radius × thickness: 0.4 m × 0.5 m) and their biomass increased with different growth rates for the periods from 1 to 5 and from 5 to 7 years. Both age and slope position were factors that influence root growth. The root diameter falls within 0–5 mm, has a significant effect on the soil shear strength and provides a conical-shape potentiation zone to ensure the efficient protection of a riverbank. The results of this study demonstrate that LBS is an efficient and feasible engineering measure in the field of riverbank protection.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 21 ( 2022-11-05), p. 14528-
    Abstract: The volatile organic compounds emitted by plants significantly impact the atmospheric environment. The impacts of drought stress on the biogenic volatile organic compound (BVOC) emissions of plants are still under debate. In this study, the effects of two drought–rehydration cycle groups with different durations on isoprene emissions from Populus nigra (black poplar) seedlings were studied. The P. nigra seedlings were placed in a chamber that controlled the soil water content, radiation, and temperature. The daily emissions of isoprene and physiological parameters were measured. The emission rates of isoprene (Fiso) reached the maximum on the third day (D3), increasing by 58.0% and 64.2% compared with the controlled groups, respectively, and then Fiso significantly decreased. Photosynthesis decreased by 34.2% and 21.6% in D3 in the first and second groups, respectively. After rehydration, Fiso and photosynthesis recovered fully in two groups. However, Fiso showed distinct inconsistencies in two groups, and the recovery rates of Fiso in the second drought group were slower than the recovery rates of Fiso in the first groups. The response of BVOC emissions during the drought-rehydration cycle was classified into three phases, including stimulated, inhibited, and restored after rehydration. The emission pattern of isoprene indicated that isoprene played an important role in the response of plants to drought stress. A drought–rehydration model was constructed, which indicated the regularity of BVOC emissions in the drought–rehydration cycle. BVOC emissions were extremely sensitive to drought, especially during droughts of short duration. Parameters in computational models related to BVOC emissions of plants under drought stress should be continuously improved.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Energies, MDPI AG, Vol. 16, No. 8 ( 2023-04-21), p. 3587-
    Abstract: A number of canisters need to be lightweight designed to store the spherical fuel elements (SFE) used in high-temperature gas-cooled reactors (HTGR). The main challenge for engineering is pursuing high-accuracy and high-efficiency optimization simultaneously. Accordingly, a hybrid surrogate model-based multi-objective optimization method with the numerical method for the lightweight and safe design of the SFE canister is proposed. To be specific, the drop analysis model of the SFE canister is firstly established where the finite element method—discrete element method (FEM–DEM) coupled method is integrated to simulate the interaction force between the SFE and canister. Through simulation, the design variables, optimization objectives, and constraints are identified. Then the hybrid radial basis function—response surface method (RBF–RSM) surrogate method is carried out to approximate and simplify the accurate numerical model. A non-dominated sorting genetic algorithm (NSGA-II) is used for resolving this multi-objective model. Optimal design is validated using comprehensive comparison, and the reduction of weight and maximum strain can be up to 2.46% and 44.65%, respectively. High-accuracy simulation with high-efficiency optimization is successfully demonstrated to perform the lightweight design on nuclear facilities.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Sensors Vol. 20, No. 16 ( 2020-08-14), p. 4573-
    In: Sensors, MDPI AG, Vol. 20, No. 16 ( 2020-08-14), p. 4573-
    Abstract: Intraoperative imaging of living tissue at the cell level by endomicroscopy might help surgeons optimize surgical procedures and provide individualized treatments. However, the resolution of the microscopic image is limited by the motion of living tissue caused by heartbeat and respiration. An active motion compensation (AMC) strategy has been recognized as an effective way to reduce, or even eliminate, the influence of tissue movement for intravital fluorescence microscopy (IVM). To realize the AMC system, a high-speed sensor for measuring the motion of tissues is needed. At present, state-of-the-art commercialized displacement sensors are not suitable to apply in minimally invasive imaging instruments to measure the motion of living tissues because of the size problem, range of measurement or the update rate. In this study, a compact high-speed image-based method for measuring the longitudinal motion of living tissues is proposed. The complexity of the proposed method is the same as that of the traditional wide-field fluorescent microscopy (WFFM) system, which makes it easy to be miniaturized and integrated into a minimally invasive imaging instrument. Experimental results reveal that the maximum indication error, range of measurement and the sensitivity of the laboratory-built experimental prototype is 150 μm, 6 mm and −211.46 mm−1 respectively. Experimental results indicate that the proposed optical method is expected to be used in minimally invasive imaging instruments to build an AMC system.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Processes, MDPI AG, Vol. 11, No. 5 ( 2023-05-17), p. 1529-
    Abstract: To boost the operational performance of a non-aqueous DES electrolyte-based vanadium-iron redox flow battery (RFB), our previous work proposed a double-layer porous electrode spliced by carbon paper and graphite felt. However, this electrode’s architecture still needs to be further optimized under different operational conditions. Hence, this paper proposes a multi-layer artificial neural network (ANN) model to predict the relationship between vanadium-iron RFB’s performance and double-layer electrode structural characteristics. A training dataset of ANN is generated by three-dimensional finite-element numerical simulations of the galvanostatic discharging process. In addition, a genetic algorithm (GA) is coupled to an ANN regression training process for optimizing the model parameters to elevate the accuracy of ANN prediction. The novelty of this work lies in this modified optimal method of a double-layer electrode for non-aqueous RFB driven by a machine learning (ML) model coupled with GA. The comparative result shows that the ML model reaches a satisfactory predictive accuracy, and the mean square error of this model is lower than other popular ML regression models. Based on the known region of operating conditions, the obtained results prove that this well-trained ML algorithm can be used to estimate whether a double-layer electrode should be applied to a non-aqueous vanadium-iron RFB and determine an appropriate thickness ratio for this double-layer electrode.
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720994-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Metals, MDPI AG, Vol. 12, No. 10 ( 2022-09-28), p. 1628-
    Abstract: In this paper, two low-grade electrical steels are used to inspect the effect of initial columnar grains and final transformation treatment on the microstructure and textures. Results show that the Al and P elements, besides causing the surface oxidation or segregation, increase the critical transformation temperatures of steels, thus restricting the formation of strong {100} texture. Two-layer grain structure of typical surface-effect-induced transformation is developed in the steels without Al. The transformation textures in both steels are nearly random, which are much better than the {111} recrystallization texture or the memory type of transformation texture. The steel with initial columnar grained structure produces more {110}-oriented grains in finally transformed sheets, whereas the initial hot-rolled structure induces more {100}-oriented grains. In addition, high cold rolling reduction produces a one-layer grain structure in the final transformed sheets. It is confirmed again that the increase in final heating temperature leads to a transition from the memory type of transformation texture to surface-effect-induced transformation texture. For commercial steels containing harmful Al and P, the change in processing parameters during transformation treatment does not influence transformed structure and texture. Finally, the combined control of three stages of transformation during casting, hot rolling and final annealing is discussed.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662252-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...