GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (5)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  ISPRS International Journal of Geo-Information Vol. 11, No. 6 ( 2022-06-01), p. 332-
    In: ISPRS International Journal of Geo-Information, MDPI AG, Vol. 11, No. 6 ( 2022-06-01), p. 332-
    Abstract: Recognizing building group patterns is fundamental to numerous fields, such as urban landscape evaluation, social analysis, and map generalization. Despite the increasing number of algorithms available for building group pattern recognition, there is still a lack of satisfactory grouping results due to insufficient information and only geometric features being provided to recognition methods. This study aims to provide a novel building grouping method that combines building function and geometric information. We specifically focus on the process of recognizing building groups in topographic maps as a prerequisite to subsequent map generalization. First, the building functions are inferred using the dynamic time warping (DTW) algorithm based on Tencent user density data and POIs (points of interest). Then, two types of constrained Delaunay triangulations (CDTs) are created for each building block, from which several spatial indices, such as the continuity index (SCI), direction, and distance of every two adjacent buildings, are derived. Finally, each building block is modeled as a graph on the grounds of derived matrices and building function information, and a graph segmentation approach is proposed to extract building groups. A case study is conducted to test the proposed approach. The experimental results indicate that the proposed approach can produce satisfactory results, given that the correctness value is above 81.63% for our study area. Comparative studies reveal that the method without building function information is an ineffective grouping method when buildings with different functions are close to each other. In addition, generalization results derived from the proposed method are more in line with those of maps for daily use, as they provide users with more accurate spatial divisions of urban buildings.
    Type of Medium: Online Resource
    ISSN: 2220-9964
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2655790-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Catalysts Vol. 10, No. 7 ( 2020-07-15), p. 788-
    In: Catalysts, MDPI AG, Vol. 10, No. 7 ( 2020-07-15), p. 788-
    Abstract: Interest in chemical hydrogen storage has increased, because the supply of fossil fuels are limited and the harmful effects of burning fossil fuels on the environment have become a focus of public concern. Hydrogen, as one of the energy carriers, is useful for the sustainable development. However, it is widely known that controlled storage and release of hydrogen are the biggest barriers in large-scale application of hydrogen energy. Ammonia borane (NH3BH3, AB) is deemed as one of the most promising hydrogen storage candidates on account of its high hydrogen to mass ratio and environmental benignity. Development of efficient catalysts to further improve the properties of chemical kinetics in the dehydrogenation of AB under appropriate conditions is of importance for the practical application of this system. In previous studies, a variety of noble metal catalysts and their supported metal catalysts (Pt, Pd, Au, Rh, etc.) have presented great properties in decomposing the chemical hydride to generate hydrogen, thus, promoting their application in dehydrogenation of AB is urgent. We analyzed the hydrolysis of AB from the mechanism of hydrogen release reaction to understand more deeply. Based on these characteristics, we aimed to summarize recent advances in the development of noble metal catalysts, which had excellent activity and stability for AB dehydrogenation, with prospect towards realization of efficient noble metal catalysts.
    Type of Medium: Online Resource
    ISSN: 2073-4344
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662126-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Catalysts Vol. 10, No. 8 ( 2020-08-13), p. 930-
    In: Catalysts, MDPI AG, Vol. 10, No. 8 ( 2020-08-13), p. 930-
    Abstract: Hydrous hydrazine (N2H4∙H2O) is a candidate for a hydrogen carrier for storage and transportation due to low material cost, high hydrogen content of 8.0%, and liquid stability at room temperature. Pt and Pt nanoalloy catalysts have been welcomed by researchers for the dehydrogenation of hydrous hydrazine recently. Therefore, in this review, we give a summary of Pt nanoalloy catalysts for the dehydrogenation of hydrous hydrazine and briefly introduce the decomposition mechanism of hydrous hydrazine to prove the design principle of the catalyst. The chemical characteristics of hydrous hydrazine and the mechanism of dehydrogenation reaction are briefly introduced. The catalytic activity of hydrous hydrazine on different supports and the factors affecting the selectivity of hydrogen catalyzed by Ni-Pt are analyzed. It is expected to provide a new way for the development of high-activity catalysts for the dehydrogenation of hydrous hydrazine to produce hydrogen.
    Type of Medium: Online Resource
    ISSN: 2073-4344
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662126-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  ISPRS International Journal of Geo-Information Vol. 9, No. 4 ( 2020-04-09), p. 231-
    In: ISPRS International Journal of Geo-Information, MDPI AG, Vol. 9, No. 4 ( 2020-04-09), p. 231-
    Abstract: Building pattern recognition is fundamental to a wide range of downstream applications, such as urban landscape evaluation, social analyses, and map generalization. Although many studies have been conducted, there is still a lack of satisfactory results, due to the imprecision of the relative direction model of any two adjacent buildings and the ineffective extraction methods. This study aims to provide an alternative for quantifying the direction and the spatial continuity of any two buildings on the basis of the Delaunay triangulation for the recognition of linear building patterns. First, constrained Delaunay triangulations (CDTs) are created for all buildings within each block and every two adjacent buildings. Then, the spatial continuity index (SCI), the direction index (DI), and other spatial relations (e.g., distance) of every two adjacent buildings are derived using the CDT. Finally, the building block is modelled as a graph based on derived matrices, and a graph segmentation approach is proposed to extract linear building patterns. In the segmentation process, the edges of the graph are removed first, according to the global thresholds of the SCI and distance, and are subsequently subdivided into subgraphs on direction rules. The proposed method is tested using three datasets. The experimental results suggest that the proposed method can recognize both collinear and curvilinear building patterns, given that the correctness values are all above 92% for the three study areas. The results also demonstrate that the novel SCI can effectively filter many insignificant neighbor relationships in the graph segmentation process. It is noteworthy that the proposed DI is capable of measuring building relative directions accurately and works efficiently in linear building pattern extraction.
    Type of Medium: Online Resource
    ISSN: 2220-9964
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2655790-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Pharmaceutics, MDPI AG, Vol. 15, No. 7 ( 2023-06-21), p. 1789-
    Abstract: Cytosolic delivery of peptides is of great interest owing to their biological functions, which could be utilized for therapeutic applications. However, their susceptibility to enzymatic degradation and multiple cellular barriers generally hinders their clinical application. Integration into nanoparticles, which can enhance the stability and membrane permeability of bioactive peptides, is a promising strategy to overcome extracellular and intracellular obstacles. Herein, we present a versatile platform for the cellular delivery of various cargo peptides by integration into metallo-peptidic coordination nanoparticles. Both termini of cargo peptides were conjugated with gallic acid (GA) to assemble GA-modified peptides into nanostructures upon coordination of Fe(III). Initial pre-complexation of Fe(III) by poly-(vinylpolypyrrolidon) (PVP) as a template favored the formation of nanoparticles, which are able to deliver the peptides into cells efficiently. Iron–gallic acid peptide nanoparticles (IGPNs) are stable in water and are supposed to generate reactive oxygen species (ROS) from endogenous H2O2 in cells via the Fenton reaction. The strategy was successfully applied to an exemplary set of peptide sequences varying in length (1–7 amino acids) and charge (negative, neutral, positive). To confirm the capability of transporting bioactive cargos into cells, pro-apoptotic peptides were integrated into IGPNs, which demonstrated potent killing of human cervix carcinoma HeLa and murine neuroblastoma N2a cells at a 10 µM peptide concentration via the complementary mechanisms of peptide-triggered apoptosis and Fe(III)-mediated ROS generation. This study demonstrates the establishment of IGPNs as a novel and versatile platform for the assembly of peptides into nanoparticles, which can be used for cellular delivery of bioactive peptides combined with intrinsic ROS generation.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...