GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (29)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Cells Vol. 9, No. 6 ( 2020-06-13), p. 1461-
    In: Cells, MDPI AG, Vol. 9, No. 6 ( 2020-06-13), p. 1461-
    Abstract: There is no vaccine or specific antiviral treatment for COVID-19, which is causing a global pandemic. One current focus is drug repurposing research, but those drugs have limited therapeutic efficacies and known adverse effects. The pathology of COVID-19 is essentially unknown. Without this understanding, it is challenging to discover a successful treatment to be approved for clinical use. This paper addresses several key biological processes of reactive oxygen, halogen and nitrogen species (ROS, RHS and RNS) that play crucial physiological roles in organisms from plants to humans. These include why superoxide dismutases, the enzymes to catalyze the formation of H2O2, are required for protecting ROS-induced injury in cell metabolism, why the amount of ROS/RNS produced by ionizing radiation at clinically relevant doses is ~1000 fold lower than the endogenous ROS/RNS level routinely produced in the cell and why a low level of endogenous RHS plays a crucial role in phagocytosis for immune defense. Herein we propose a plausible amplification mechanism in immune defense: ozone-depleting-like halogen cyclic reactions enhancing RHS effects are responsible for all the mentioned physiological functions, which are activated by H2O2 and deactivated by NO signaling molecule. Our results show that the reaction cycles can be repeated thousands of times and amplify the RHS pathogen-killing (defense) effects by 100,000 fold in phagocytosis, resembling the cyclic ozone-depleting reactions in the stratosphere. It is unraveled that H2O2 is a required protective signaling molecule (angel) in the defense system for human health and its dysfunction can cause many diseases or conditions such as autoimmune disorders, aging and cancer. We also identify a class of potent drugs for effective treatment of invading pathogens such as HIV and SARS-CoV-2 (COVID-19), cancer and other diseases, and provide a molecular mechanism of action of the drugs or candidates.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Vaccines, MDPI AG, Vol. 10, No. 6 ( 2022-06-09), p. 920-
    Abstract: Vaccination against coronavirus disease 2019 (COVID-19) has become an important public health solution. Developing a safe and effective vaccine against COVID-19 is a viable long-term solution to control the pandemic. As one of the two inactivated severe acute respiratory syndrome virus 2 (SARS-CoV-2) vaccines developed in China that entered the WHO emergency use list, Sinopharm BBIBP-CorV, an aluminum-hydroxide-adjuvanted, inactivated whole-virus vaccine, has been widely distributed, with more than 400 million doses administered in more than 40 countries. The evidence of the safety, efficacy, and effectiveness of BBIBP-CorV is gathered and reviewed. We further comment on one of the latest papers that disclosed the effectiveness results between BBIBP-CorV, rAd26-rAd5, and ChAdOx1.
    Type of Medium: Online Resource
    ISSN: 2076-393X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2703319-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Atmosphere Vol. 14, No. 8 ( 2023-07-31), p. 1232-
    In: Atmosphere, MDPI AG, Vol. 14, No. 8 ( 2023-07-31), p. 1232-
    Abstract: This review identifies a critical problem in the fundamental physics of current climate models. The large greenhouse effect of rising CO2 assumed in climate models is assessed by six key observations from ground- and satellite-based measurements. This assessment is enhanced by statistical analyses and model calculations of global or regional mean surface temperature changes by conventional climate models and by a conceptual quantum physical model of global warming due to halogen-containing greenhouse gases (halo-GHGs). The postulated large radiative forcing of CO2 in conventional climate models does not agree with satellite observations. Satellite-observed warming pattern resembles closely the atmospheric distribution of chlorofluorocarbons (CFCs). This review helps understand recent remarkable observations of reversals from cooling to warming in the lower stratosphere over most continents and in the upper stratosphere at high latitudes, surface warming cessations in the Antarctic, North America, UK, and Northern-Hemisphere (NH) extratropics, and the stabilization in NH or North America snow cover, since the turn of the century. The complementary observation of surface temperature changes in 3 representative regions (Central England, the Antarctic, and the Arctic) sheds new light on the primary mechanism of global warming. These observations agree well with not CO2-based climate models but the CFC-warming quantum physical model. The latter offers parameter-free analytical calculations of surface temperature changes, exhibiting remarkable agreement with observations. These observations overwhelmingly support an emerging picture that halo-GHGs made the dominant contribution to global warming in the late 20th century and that a gradual reversal in warming has occurred since ~2005 due to the phasing out of halo-GHGs. Advances and insights from this review may help humans make rational policies to reverse the past warming and maintain a healthy economy and ecosystem.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancers, MDPI AG, Vol. 9, No. 12 ( 2017-06-05), p. 63-
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cells, MDPI AG, Vol. 8, No. 6 ( 2019-06-09), p. 563-
    Abstract: Background: Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to standard chemo- and radiotherapy. Recently, a new class of non-platinum-based halogenated molecules (called FMD compounds) was discovered that selectively kills cancer cells. Here, we investigate the potential of 1,2-Diamino-4,5-dibromobenzene (2Br-DAB) in combination with standard chemotherapy and radiotherapy in murine and human PDAC. Methods: Cell viability and colony formation was performed in human (Panc1, BxPC3, PaTu8988t, MiaPaCa) and three murine LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) pancreatic cancer cell lines. In vivo, preclinical experiments were conducted in LSL-KrasG12D/+;p48-Cre (KC) and KPC mice using 2Br-DAB (7 mg/kg, i.p.), +/- radiation (10 × 1.8 Gy), gemcitabine (100 mg/kg, i.p.), or a combination. Tumor growth and therapeutic response were assessed by high-resolution ultrasound and immunohistochemistry. Results: 2Br-DAB significantly reduced cell viability in human and murine pancreatic cancer cell lines in a dose-dependent manner. In particular, colony formation in human Panc1 cells was significantly decreased upon 25 µM 2Br-DAB + radiation treatment compared with vehicle control (p = 0.03). In vivo, 2Br-DAB reduced tumor frequency in KC mice. In the KPC model, 2Br-DAB or gemcitabine monotherapy had comparable therapeutic effects. Furthermore, the combination of gemcitabine and 2Br-DAB or 2Br-DAB and 18 Gy irradiation showed additional antineoplastic effects. Conclusions: 2Br-DAB is effective in killing pancreatic cancer cells in vitro. 2Br-DAB was not toxic in vivo, and additional antineoplastic effects were observed in combination with irradiation.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Atmosphere Vol. 13, No. 9 ( 2022-09-02), p. 1419-
    In: Atmosphere, MDPI AG, Vol. 13, No. 9 ( 2022-09-02), p. 1419-
    Abstract: This paper aims to better understand why there was a global warming pause in 2000–2015 and why the global mean surface temperature (GMST) has risen again in recent years. We present and statistically analyze substantial time-series observed datasets of global lower-stratospheric temperature (GLST), troposphere–stratosphere temperature climatology, global land surface air temperature, GMST, sea ice extent (SIE) and snow cover extent (SCE), combined with modeled calculations of GLSTs and GMSTs. The observed and analyzed results show that GLST/SCE has stabilized since the mid-1990s with no significant change over the past two and a half decades. Upper-stratospheric warming at high latitudes has been observed and GMST or global land surface air temperature has reached a plateau since the mid-2000s with the removal of natural effects. In marked contrast, continued drastic warmings at the coasts of polar regions (particularly Russia and Alaska) are observed and well explained by the sea-ice-loss warming amplification mechanism. The calculated GMSTs by the parameter-free quantum-physics warming model of halogenated greenhouse gases (GHGs) show excellent agreement with the observed GMSTs after the natural El Niño southern oscillation and volcanic effects are removed. These results have provided strong evidence for the dominant warming mechanism of anthropogenic halogenated GHGs. The results also call for closer scrutiny of the assumptions made in current climate models.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Vaccines, MDPI AG, Vol. 9, No. 9 ( 2021-09-06), p. 993-
    Abstract: Background: The SARS-CoV-2 vaccine has been widely rolled out globally in the general populations. However, specific data on vaccination confidence, willingness or coverage among health care workers (HCWs) has been less reported. Methods: A cross-sectional online survey was conducted to specify the basic data and patterns of vaccination confidence, willingness and coverage among HCWs nationwide. Results: In total, 2386 out of 2583 (92.4%) participants were enrolled for analysis, and the rates of confidence in vaccine, professional institutes and government were 75.1%, 85.2% and 85.4%, respectively. The overall vaccination coverage rate was 63.6% which was adjusted as 82.8% for participants under current medical conditions or having contraindications. Confidence in vaccine safety was shown to be the most related factor to willingness among doctors, nurses, medical technicians and hospital administrators, while confidence in vaccine effectiveness as well as trust in government played the key role in formulating public health employees’ willingness. 130 (7.1% of 1833) participants reporting willingness still not been vaccinated regardless of contraindications. Multivariate analysis among willingness participants showed that males, aged over 30 years, public health employees and higher vaccination confidence had significantly higher vaccination rates with ORs (95% confidence intervals) as 1.64 (1.08–2.49), 3.14 (2.14–4.62), 2.43 (1.46–4.04) or 2.31 (1.24–4.33). Conclusions: HCWs’ confidence, willingness and coverage rates to the vaccine were generally at high levels. Heterogeneity among HCWs should be considered for future vaccination promotion strategies. The population’s confidence in vaccination is not only the determinant to their willingness, but also guarantees their actual vaccine uptake.
    Type of Medium: Online Resource
    ISSN: 2076-393X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2703319-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2015
    In:  Nutrients Vol. 7, No. 5 ( 2015-05-21), p. 3813-3827
    In: Nutrients, MDPI AG, Vol. 7, No. 5 ( 2015-05-21), p. 3813-3827
    Type of Medium: Online Resource
    ISSN: 2072-6643
    Language: English
    Publisher: MDPI AG
    Publication Date: 2015
    detail.hit.zdb_id: 2518386-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Molecules, MDPI AG, Vol. 22, No. 8 ( 2017-07-27), p. 1257-
    Abstract: Twenty-three new berberine (BBR) analogues defined on substituents of ring D were synthesized and evaluated for their activity for suppression of tumor necrosis factor (TNF)-α-induced nuclear factor (NF)-κB activation. Structure–activity relationship (SAR) analysis indicated that suitable tertiary/quaternary carbon substitutions at the 9-position or rigid fragment at position 10 might be beneficial for enhancing their anti-inflammatory potency. Among them, compounds 2d, 2e, 2i and 2j exhibited satisfactory inhibitory potency against NF-κB activation, with an inhibitory rate of around 90% (5 μM), much better than BBR. A preliminary mechanism study revealed that all of them could inhibit TNF-α-induced NF-κB activation via impairing IκB kinase (IKK) phosphorylation as well as cytokines interleukin (IL)-6 and IL-8 induced by TNF-α. Therefore, the results provided powerful information on further structural modifications and development of BBR derivatives into a new class of anti-inflammatory candidates for the treatment of inflammatory diseases.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Catalysts, MDPI AG, Vol. 9, No. 3 ( 2019-03-19), p. 282-
    Abstract: Increasing the low-temperature performance of nickel-based catalysts in syngas methanation is critical but very challenging, because at low temperatures there is high concentration of CO on the catalyst surface, causing formation of nickel carbonyl with metallic Ni and further catalyst deactivation. Herein, we have prepared highly dispersed Ni nanocatalysts by in situ reduction of NiMnAl-layered double hydroxides (NiMnAl-LDHs) and applied them to syngas methanation. The synthesized Ni nanocatalysts maintained the nanosheet structure of the LDHs, in which Ni particles were decorated with MnOy species and embedded in the AlOx nanosheets. It was observed that the Ni nanocatalysts exhibited markedly better low-temperature performance than commercial catalysts in the syngas methanation. At 250 °C, 3.0 MPa and a high weight hourly space velocity (WHSV) of 30,000 mL·g−1·h−1, both the CO conversion and the CH4 selectivity reached 100% over the former, while those over the commercial catalyst were only 14% and 76%, respectively. Furthermore, this NiMnAl catalyst exhibited strong anti-carbon and anti-sintering properties at high temperatures. The enhanced low-temperature performance and high-temperature stability originated from the promotion effect of MnOy and the embedding effect of AlOx in the catalyst.
    Type of Medium: Online Resource
    ISSN: 2073-4344
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662126-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...