GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Chemosensors Vol. 10, No. 11 ( 2022-11-21), p. 493-
    In: Chemosensors, MDPI AG, Vol. 10, No. 11 ( 2022-11-21), p. 493-
    Abstract: Bioluminescent analysis of adenosine triphosphate (ATP) concentrations is now acquiring new applications in the form of objects and processes in which it can be effectively used for sensing. A quick analysis of biological objects and systems for which the level of ATP concentrations is one of the main parameters, and a forecast of the development of various situations in such biosystems under industrial production conditions or the ecological state of the environment, confirmed by various results of analytical control of other parameters, turns out to be simple and effective. Sanitary control, quality control of purified water, microbial analysis in the food industry, maintenance of drugs and estimation of their quality, and monitoring of the metabolic state of biocatalysts used in various biotechnological processes are between the main trends of recent applications of bioluminescent ATP-assay. Additionally, the new areas of ATP sensing are developed, and the following topics are their creation of synthetic microbial consortia, their introduction as new biocatalysts to biodegradation of pesticides, suppression of methane accumulation in model urban land fields, control of dangerous development of biocorrosive processes, design of chemical-biocatalytic hybrid processes, creation of effective antimicrobial dressing and protective tissue materials, etc. These aspects are the subject of this review.
    Type of Medium: Online Resource
    ISSN: 2227-9040
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704218-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Diversity, MDPI AG, Vol. 14, No. 10 ( 2022-10-13), p. 868-
    Abstract: Ferromanganese (Fe-Mn) sedimentary layers and nodules occur at different depths within sediments at deep basins and ridges of Lake Baikal. We studied Fe-Mn nodules and host sediments recovered at the slope of Bolshoy Ushkany Island. Layer-by-layer 230Th/U dating analysis determined the initial age of the Fe-Mn nodule formation scattered in the sediments as 96 ± 5–131 ± 8 Ka. The distribution profiles of the main ions in the pore waters of the studied sediment are similar to those observed in the deep-sea areas of Lake Baikal, while the chemical composition of Fe-Mn nodules indicates their diagenetic formation with hydrothermal influence. Among the bacteria in microbial communities of sediments, members of organoheterotrophic Gammaproteobacteria, Chloroflexi, Actinobacteriota, Acidobacteriota, among them Archaea—chemolithoautotrophic ammonia-oxidizing archaea Nitrososphaeria, dominated. About 13% of the bacterial 16S rRNA gene sequences in Fe-Mn layers belonged to Methylomirabilota representatives which use nitrite ions as electron acceptors for the anaerobic oxidation of methane (AOM). Nitrospirota comprised up to 9% of the layers of Bolshoy Ushkany Island. In bacterial communities of Fe-Mn nodule, a large percentage of sequences were attributed to Alphaproteobacteria, Actinobacteriota and Firmicutes, as well as a variety of OTUs with a small number of sequences characteristic of hydrothermal ecosystems. The contribution of representatives of Methylomirabilota and Nitrospirota in communities of Fe-Mn nodule was minor. Our data support the hypothesis that chemolithoautotrophs associated with ammonium-oxidizing archaea and nitrite-oxidizing bacteria can potentially play an important role as primary producers of Fe-Mn substrates in freshwater Lake Baikal.
    Type of Medium: Online Resource
    ISSN: 1424-2818
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518137-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Microorganisms, MDPI AG, Vol. 11, No. 7 ( 2023-07-24), p. 1865-
    Abstract: We analyzed the amplicons of the 16S rRNA genes and assembled metagenome-assembled genomes (MAGs) of the enrichment culture from the Fe-Mn layer to have an insight into the diversity and metabolic potential of microbial communities from sediments of two sites in the northern basin of Lake Baikal. Organotrophic Chloroflexota, Actionobacteriota, and Acidobacteriota, as well as aerobic and anaerobic participants of the methane cycle (Methylococcales and Methylomirabilota, respectively), dominated the communities of the surface layers. With depth, one of the cores showed a decrease in the proportion of the Chloroflexota and Acidobacteriota members and a substantial increase in the sequences of the phylum Firmicutes. The proportion of the Desulfobacteriota and Thermodesulfovibronia (Nitrospirota) increased in another core. The composition of archaeal communities was similar between the investigated sites and differed in depth. Members of ammonia-oxidizing archaea (Nitrososphaeria) predominated in the surface sediments, with an increase in anaerobic methanotrophs (Methanoperedenaceae) and organoheterotrophs (Bathyarchaeia) in deep sediments. Among the 37 MAGs, Gammaproteobacteria, Desulfobacteriota, and Methylomirabilota were the most common in the microbial community. Metagenome sequencing revealed the assembled genomes genes for N, S, and CH4 metabolism for carbon fixation, and genes encoding Fe and Mn pathways, indicating the likely coexistence of the biogeochemical cycle of various elements and creating certain conditions for the development of taxonomically and functionally diverse microbial communities.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...