GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Catalysts, MDPI AG, Vol. 10, No. 1 ( 2020-01-11), p. 107-
    Abstract: Gold catalysts have been reported to exhibit good performance in aerobic oxidation of alcohols, but the intrinsic origin of the catalytic reactivity is still illusive. The catalyst preparation method, the morphology of the gold particles, and even the support might be key factors that determine the activity. Here, we prepared a series of gold catalysts with different supports, i.e., the hydrotalcite (HT), ZnO, MgO, Al2O3, and SiO2, by using the atomically controlled Au25 nanoclusters (NCs) as the gold precursor. The characterization results of the X-ray diffraction (XRD), UV-vis and transmission electron microscopy (TEM) show that the gold particles were mostly uniformly distributed on the supports, with a mean particle size within 3 nm. In aerobic oxidation of benzyl alcohol, the MgAl-HT- and Al2O3-supported Au25 NCs display good performances, with turnover frequency (TOF) values of ~2927 and 2892 h−1, respectively, whereas the SiO2-, MgO-, and ZnO-supported analogues show much inferior activity. The high resolution TEM and X-ray photoelectron spectra (XPS) results suggest that the interactions between gold and the supports in different samples are differing, which influences the morphology and the nature of gold. Our results further point to the importance of acid-base property of the support and the metal-support synergy rather than the gold particle size alone in achieving high-performance in selective alcohol oxidation. Moreover, this work provided a good way to design gold catalysts with controllable sizes that is crucial for understanding the reaction process in aerobic oxidation of alcohol.
    Type of Medium: Online Resource
    ISSN: 2073-4344
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662126-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Energies, MDPI AG, Vol. 12, No. 14 ( 2019-07-18), p. 2768-
    Abstract: Effective thermal conductivity (ETC), as a necessary parameter in the thermal properties of rock, is affected by the pore structure and the thermal conduction conditions. To evaluate the effect of fractures and saturated fluids on sandstone’s thermal conductivity, we simulated thermal conduction along three orthogonal (X, Y, and Z) directions under air- and water-saturated conditions on reconstructed digital rocks with different fractures. The results show that the temperature distribution is separated by the fracture. The significant difference between the thermal conductivities of solid and fluid is the primary factor influencing the temperature distribution, and the thermal conduction mainly depends on the solid phase. A nonlinear reduction of ETC is observed with increasing fracture length and angle. Only when the values of the fracture length and angle are large, a negative effect of fracture aperture on the ETC is apparent. Based on the partial least squares (PLS) regression method, the fluid thermal conductivity shows the greatest positive influence on the ETC value. The fracture length and angle are two other factors significantly influencing the ETC, while the impact of fracture aperture may be ignored. We obtained a predictive equation of ETC which considers the related parameters of digital rocks, including the fracture length, fracture aperture, angle between the fracture and the heat flux direction, porosity, and the thermal conductivity of saturated fluid.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...