GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  International Journal of Molecular Sciences Vol. 22, No. 21 ( 2021-11-02), p. 11883-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 21 ( 2021-11-02), p. 11883-
    Abstract: The failure of amyloid beta (Aβ) clearance is a major cause of Alzheimer’s disease, and the brain lymphatic systems play a crucial role in clearing toxic proteins. Recently, brain lymphatic endothelial cells (BLECs), a non-lumenized lymphatic cell in the vertebrate brain, was identified, but Aβ clearance via this novel cell is not fully understood. We established an in vivo zebrafish model using fluorescently labeled Aβ42 to investigate the role of BLECs in Aβ clearance. We discovered the efficient clearance of monomeric Aβ42 (mAβ42) compared to oligomeric Aβ42 (oAβ42), which was illustrated by the selective uptake of mAβ42 by BLECs and peripheral transport. The genetic depletion, pharmacological inhibition via the blocking of the mannose receptor, or the laser ablation of BLECs resulted in the defective clearance of mAβ42. The treatment with an Aβ disaggregating agent facilitated the internalization of oAβ42 into BLECs and improved the peripheral transport. Our findings reveal a new role of BLECs in the differential clearance of mAβ42 from the brain and provide a novel therapeutic strategy based on promoting Aβ clearance.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Polymers, MDPI AG, Vol. 12, No. 8 ( 2020-08-11), p. 1802-
    Abstract: Octyl formate is an important substance used in the perfume industry in products such as cosmetics, perfumes, and flavoring. Octyl formate is mostly produced by chemical catalysts. However, using enzymes as catalysts has gathered increasing interest due to their environment-friendly proprieties. In the present study, we aimed to identify the optimal conditions for the synthesis of octyl formate through immobilized enzyme-mediated esterification. We investigated the effects of enzymatic reaction parameters including the type of immobilized enzyme, enzyme concentration, molar ratio of reactants, reaction temperature, and type of solvent using the optimization method of one factor at a time (OFAT). The maximum conversion achieved was 96.51% with Novozym 435 (15 g/L), a 1:7 formic acid to octanol ratio, a reaction temperature of 40 °C, and with 1,2-dichloroethane as solvent. Moreover, we demonstrated that the Novozym 435 can be reused under the optimal conditions without affecting the octyl formate yield, which could help reduce the economic burden associated with enzymatic synthesis.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Metabolites, MDPI AG, Vol. 11, No. 10 ( 2021-10-07), p. 689-
    Abstract: Zinc plays a pivotal role in the function of cells and can induce apoptosis in various cancer cells, including Raji B lymphoma. However, the metabolic mechanism of Zn-induced apoptosis in Raji cells has not been explored. In this study, we performed global metabolic profiling using UPLC−Orbitrap−MS to assess the apoptosis of Raji cells induced by Zn ions released from ZnO nanorods. Multivariate analysis and database searches identified altered metabolites. Furthermore, the differences in the phosphorylation of 1380 proteins were also evaluated by Full Moon kinase array to discover the protein associated Zn−induced apoptosis. From the results, a prominent increase in glycerophosphocholine and fatty acids was observed after Zn ion treatment, but only arachidonic acid was shown to induce apoptosis. The kinase array revealed that the phosphorylation of p53, GTPase activation protein, CaMK2a, PPAR−γ, and PLA−2 was changed. From the pathway analysis, metabolic changes showed earlier onset than protein signaling, which were related to choline metabolism. LC−MS analysis was used to quantify the intracellular choline concentration, which decreased after Zn treatment, which may be related to the choline consumption required to produce choline-containing metabolites. Overall, we found that choline metabolism plays an important role in Zn-induced Raji cell apoptosis.
    Type of Medium: Online Resource
    ISSN: 2218-1989
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662251-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Polymers, MDPI AG, Vol. 12, No. 11 ( 2020-11-10), p. 2633-
    Abstract: Acrylic pressure-sensitive adhesives (PSAs) are used as fixatives between layers of a display. PSAs’ function is an important factor that determines the performance of the display. Of the various display types available, the touch screen panel (TSP) of smart devices is firmly related to the relative permittivity of the elementals. Therefore, adjusting the relative permittivity of the PSA is indispensable for driving the TSP. Accordingly, selected acrylic pre-polymers were polymerized and the pre-polymer was blended and cross-linked with monomers with different chemical structure to adjust the relative permittivity. The monomers were hexametyldisiloxane (HMDS), N-vinylcaprolactam (NVC), tert-butyl acrylate (TBA), and isooctadecyl acrylate (ISTA). The gel fraction and transmittance as a function of the monomers show a similar result to the pure acrylic PSA. However, the gel fraction value decreased to about 90% and the transmittance decreased to about 85%, due to the immiscibility between nonpolar HMDS and acrylic PSA. On the other hand, the adhesion properties were improved when NVC was added because of the polarity of the nitrogen group. In addition, the relative permittivity of the PSA decreased regardless of the monomer chosen. There was, however, a difference in the optimal content of each monomer, and NVC decreased from 4 phr content to about 3.4 in reducing relative permittivity. Through the above results, it was confirmed that NVC having a nitrogen group is most advantageous in lowering adhesion properties and relative permittivity, and necessitates further research based on the findings.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Biosensors, MDPI AG, Vol. 12, No. 7 ( 2022-06-27), p. 464-
    Abstract: Electrochemical nano-biosensor systems are popular in the industrial field, along with evaluations of medical, agricultural, environmental and sports analysis, because they can simultaneously perform qualitative and quantitative analyses with high sensitivity. However, real-time detection using an electrochemical nano-biosensor is greatly affected by the surrounding environment with the performance of the electron transport materials. Therefore, many researchers are trying to find good factors for real-time detection. In this work, it was found that a composite composed of graphite oxide/cobalt/chitosan had strong stability and electron transfer capability and was applied to a bioelectrochemical nano-biosensor with high sensitivity and stability. As a mediator-modified electrode, the GO/Co/chitosan composite was electrically deposited onto an Au film electrode by covalent boding, while glucose oxidase as a receptor was immobilized on the end of the GO/Co/chitosan composite. It was confirmed that the electron transfer ability of the GO/Co/chitosan composite was excellent, as shown with power density analysis. In addition, the real-time detection of D-glucose could be successfully performed by the developed nano-biosensor with a high range of detected concentrations from 1.0 to 15.0 mM. Furthermore, the slope value composed of the current, per the concentration of D-glucose as a detection response, was significantly maintained even after 14 days.
    Type of Medium: Online Resource
    ISSN: 2079-6374
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662125-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Crystals, MDPI AG, Vol. 13, No. 9 ( 2023-08-28), p. 1311-
    Abstract: MoO2 micro-powders with a mean pore size of 3.4 nm and specific surface area of 2.5 g/cm3 were compacted by dry pressing, then pressureless sintered at a temperature of 1000–1150 °C for 2 h or for a sintering time of 0.5–12 h at 1050 °C in an N2 atmosphere. Then, their microstructure evolution for morphology, crystallite, and grain growth were investigated. By sintering at a certain temperature and times, the irregular shape of the MoO2 powders transformed into an equiaxed structure, owing to the surface energy, which contributed to faster grain growth at the initial stage of sintering. The crystallite and grain sizes exponentially increased with the sintering time, and the growth exponent, n, was approximately 2.8 and 4, respectively. This indicates that the crystallite growth is governed by dislocation-mediated lattice diffusion, and the grain growth is determined by surface diffusion-controlled pore mobility. The increase in sintering temperature increased both crystallite and grain size, which obeyed the Arrhenius equation, and the activation energies were determined to be 95.65 and 76.95 kJmol−1 for crystallite and grain growths, respectively.
    Type of Medium: Online Resource
    ISSN: 2073-4352
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661516-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Foods, MDPI AG, Vol. 10, No. 9 ( 2021-08-26), p. 2000-
    Abstract: Advanced glycation end-products (AGEs) such as methylglyoxal (MGO) play a vital role in the pathogenesis of nephropathy, a diabetic complication. In the present study, we evaluated the anti-glycation and renal protective properties of Ishige okamurae extract (IOE) against AGE-induced oxidative stress. HPLC analysis confirmed that bioactive phlorotannins such as diphlorethohydroxycarmalol and ishophloroglucin A are predominantly present in IOE. IOE showed strong anti-glycation activities via inhibition of AGE formation, inhibition of AGE–protein cross-linking, and breaking of AGE–protein cross-links. In addition, in vitro studies using mesangial cells demonstrated that IOE effectively suppressed intracellular reactive oxygen species production, intracellular MGO accumulation, and apoptotic cell death by MGO-induced oxidative stress, in addition to regulating the expression of proteins involved in the receptor for AGEs and nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathways. Therefore, IOE can serve as a natural therapeutic agent for the management of AGE-related nephropathy.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Vaccines, MDPI AG, Vol. 11, No. 3 ( 2023-03-03), p. 585-
    Abstract: The coronavirus disease (COVID-19) outbreak affected the utilization and management of blood products in hospitals. Blood shortages occurred owing to social distancing policies and reduction in blood donors. However, only a few studies examined whether these changes affected blood usage and transfusion patterns. We retrospectively reviewed blood component usage according to hospital departments and phases of surgery in transfused patients admitted between 1 March 2019 and 28 February 2021, in a single center in Anyang, Korea. We also analyzed the length of hospital stay and mortality to determine prognosis. In 2020, 32,050 blood components were transfused to 2877 patients, corresponding to 15.8% and 11.8% less than the rates in 2019, respectively. Postoperative usage of blood products significantly decreased in 2020 (3.87 ± 6.50) compared to 2019 (7.12 ± 21.71) (p = 0.047). The length of hospital stay of the patients who underwent postoperative transfusion in 2019 (n = 197) was 13.97 ± 11.95 days, which was not significantly different from that in 2020 (n = 167), i.e., 16.44 ± 17.90 days (p = 0.118). Further, 9 of 197 postoperative transfusion patients died in 2019, while 8 of 167 patients died in 2020 (p = 0.920). The COVID-19 pandemic resulted in limited blood supply and reduced postoperative transfusions; however, patient prognosis was not affected.
    Type of Medium: Online Resource
    ISSN: 2076-393X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2703319-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Minerals, MDPI AG, Vol. 11, No. 1 ( 2020-12-31), p. 41-
    Abstract: Rhizofiltration experiments were conducted using uranium-contaminated groundwater and lettuce (Lactuca sativa), Chinese cabbage (Brassica campestris L.), radish (Raphanus sativus L.), and buttercup (Oenanthe javanica), which are commonly grown and consumed in South Korea. The results of the rhizofiltration experiments with artificial solutions with different initial uranium concentrations (18, 32, 84, 116, 173, and 263 μg/L) show that the uranium accumulation and bioconcentration factor (BCF) of plant roots increase with increasing uranium concentration in the groundwater. Among the four plants, the uranium concentration in the roots of Raphanus sativus L. is 1215.8 μg/g dry weight, with a maximum BCF value of 2692.7. The BCF value of the artificial solutions with various pH values (pH 3, 5, 7, and 9) is the highest under acidic conditions (pH 3) for all four plants. The uranium BCF values based on different hydroponic conditions range from 170.5 to 11580.3 and the results are comparable with those of other studies using similar methods; the highest BCF value was determined for Brassica campestris L. at pH 3. The BCF values of Raphanus sativus L. after the rhizofiltration experiments with genuine groundwater contaminated with uranium are the highest among the four species; that is, 1684.7 and 1700.1 in Oesam-dong and Bugokdong groundwater samples with uranium concentrations of 83 and 173 μg/L, respectively. The results of the scanning electron microscope/electron dispersive X-ray spectroscope analyses show that uranium in contaminated groundwater is adsorbed as a solid phase on the root surface. These results demonstrate that Raphanus sativus L. has a high tolerance to high concentrations of uranium and low pH conditions and a remarkable potential for uranium accumulation.
    Type of Medium: Online Resource
    ISSN: 2075-163X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2655947-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Electronics, MDPI AG, Vol. 11, No. 17 ( 2022-08-24), p. 2651-
    Abstract: A drift-driving maneuver is a control technique used by an expert driver to control a vehicle along a sharply curved path or slippery road. This study develops a nonlinear model predictive control (NMPC) method for the autonomous vehicle to perform a drift maneuver and generate the datasets necessary for training the deep neural network(DNN)-based drift controller. In general, the NMPC method is based on numerical optimization which is difficult to run in real-time. By replacing the previously designed NMPC method with the proposed DNN-based controller, we avoid the need for complex numerical optimization of the vehicle control, thereby reducing the computational load. The performance of the developed data-driven drift controller is verified through realistic simulations that included drift scenarios. Based on the results of the simulations, the DNN-based controller showed similar tracking performance to the original nonlinear model predictive controller; moreover, the DNN-based controller can demonstrate stable computation time, which is very important for the safety critical control objective such as drift maneuver.
    Type of Medium: Online Resource
    ISSN: 2079-9292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662127-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...