GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Quantum Reports, MDPI AG, Vol. 2, No. 4 ( 2020-09-23), p. 489-500
    Abstract: Spin-orbital interaction of light attracts much attention in nanophotonics opening new horizons for modern optical systems and devices. The photonic spin Hall effect or Imbert-Fedorov shift takes a special place among the variety of spin-orbital interaction phenomena. It exhibits as a polarization-dependent transverse light shift usually observed in specular scattering of light at interfaces with anisotropic materials. Nevertheless, the effect of the polarization mixing caused by anisotropy on the Imbert-Fedorov shift is commonly underestimated. In this work, we demonstrate that polarization mixing contribution cannot be ignored for a broad range of optical systems. In particular, we show the dominant influence of the mixing term over the standard one for the polarized optical beam incident at a quarter-wave plate within the paraxial approximation. Moreover, our study reveals a novel contribution with extraordinary polarization dependence not observable within the simplified approach. We believe that these results advance the understanding of photonic spin Hall effect and open new opportunities for spin-dependent optical phenomena.
    Type of Medium: Online Resource
    ISSN: 2624-960X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2963089-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Applied Sciences Vol. 9, No. 22 ( 2019-11-13), p. 4848-
    In: Applied Sciences, MDPI AG, Vol. 9, No. 22 ( 2019-11-13), p. 4848-
    Abstract: Recently, water has been proposed as an interesting candidate for use in applications such as tunable microwave metamaterials and dielectric resonator antennas due to its high and temperature-dependent permittivity. In the present work, we considered an electrically small water-based dielectric resonator antenna made of a short monopole encapsulated by a hemispherical water cavity. The fundamental dipole resonances supported by the water cavity were used to match the short monopole to its feed line as well as the surrounding free space. Specifically, a magnetic (electric) dipole resonance was exploited for antenna designs with a total efficiency of 29.5% (15.6%) and a reflection coefficient of −24.1 dB (−10.9 dB) at 300 MHz. The dipole resonances were effectively excited with different monopole lengths and positions as well as different cavity sizes or different frequencies in the same cavity. The overall size of the optimum design was 18 times smaller than the free-space wavelength, representing the smallest water-based antenna to date. A prototype antenna was characterized, with an excellent agreement achieved between the numerical and experimental results. The proposed water-based antennas may serve as cheap and easy-to-fabricate tunable alternatives for use in very high frequency (VHF) and the low end of ultrahigh frequency (UHF) bands for a great variety of applications.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nanomaterials, MDPI AG, Vol. 12, No. 10 ( 2022-05-20), p. 1748-
    Abstract: High-contrast gratings (HCG) are an excellent candidate for label-free detection of various kinds of biomarkers because they exhibit sharp and sensitive optical resonances. In this work, we experimentally show the performance of pedestal HCG (PHCG), which is significantly enhanced in comparison with that of conventional HCG. PCHGs were found to provide a 11.2% improvement in bulk refractive index sensitivity, from 482 nm/RIU for the conventional design to 536 nm/RIU. The observed resonance was narrower, resulting in a higher Q-factor and figure of merit. By depositing Al2O3, HfO2, and TiO2 of different thicknesses as model analyte layers, surface sensitivity values were estimated to be 10.5% better for PHCG. To evaluate the operation of the sensor in solution, avidin was employed as a model analyte. For avidin detection, the surface of the HCG was first silanized and subsequently functionalized with biotin, which is well known for its ability to bind selectively to avidin. A consistent red shift was observed with the addition of each of the functional layers, and the analysis of the spectral shift for various concentrations of avidin made it possible to calculate the limit of detection (LoD) and limit of quantification (LoQ) for the structures. PHCG showed a LoD of 2.1 ng/mL and LoQ of 85 ng/mL, significantly better than the values 3.2 ng/mL and 213 ng/mL respectively, obtained with the conventional HCG. These results demonstrate that the proposed PHCG have great potential for biosensing applications, particularly for detecting and quantifying low analyte concentrations.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Photonics Vol. 7, No. 2 ( 2020-05-20), p. 34-
    In: Photonics, MDPI AG, Vol. 7, No. 2 ( 2020-05-20), p. 34-
    Abstract: A photonic surface wave, a propagating optical mode localized at the interface of two media, can play a significant role in controlling the flow of light at nanoscale. Among various types of such waves, surface waves with hyperbolic dispersion or simply hyperbolic surface waves supported on anisotropic metal interfaces can be exploited to effectively control the propagation of lightwaves. We used semi-analytical and numerical methods to study the nature of surface waves on several configurations of three-layers metal–dielectric–metal systems including isotropic and anisotropic cases where the metal cladding layers were assumed to have infinite thickness. We used semi-analytical and numerical approaches to study the phenomena. We showed that the propagation of surface wave can be tuned from diverging to converging in the plane of the interface by the combination of metals with different anisotropic properties.
    Type of Medium: Online Resource
    ISSN: 2304-6732
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2770002-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...