GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Clinical Medicine, MDPI AG, Vol. 12, No. 20 ( 2023-10-10), p. 6432-
    Abstract: This longitudinal study aimed to evaluate facial growth and soft tissue changes in infants with complete unilateral cleft lip, alveolus, and palate (CUCLAP) at ages 3, 9, and 12 months. Using 3D images of 22 CUCLAP infants, average faces and distance maps for the entire face and specific regions were created. Color-coded maps highlighted more significant soft tissue changes from 3 to 9 months than from 9 to 12 months. The first interval showed substantial growth in the entire face, particularly in the forehead, eyes, lower lip, chin, and cheeks (p 〈 0.001), while the second interval exhibited no significant growth. This study provides insights into facial soft tissue growth in CUCLAP infants during critical developmental stages, emphasizing substantial improvements between 3 and 9 months, mainly in the chin, lower lip, and forehead. However, uneven growth occurred in the upper lip, philtrum, and nostrils throughout both intervals, with an overall decline in growth from 9 to 12 months. These findings underscore the dynamic nature of soft tissue growth in CUCLAP patients, highlighting the need to consider these patterns in treatment planning. Future research should explore the underlying factors and develop customized treatment interventions for enhanced facial aesthetics and function in this population.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Bioengineering Vol. 9, No. 11 ( 2022-11-10), p. 678-
    In: Bioengineering, MDPI AG, Vol. 9, No. 11 ( 2022-11-10), p. 678-
    Abstract: The effects of the inoculum origin, temperature or operational changes on ex situ biomethanation by complex microbial communities have been investigated; however, it remains unclear how the diversity of the inoculum influences the process and its stability. We explored the effect of microbial diversity of four inocula (coded as PF, WW, S37 and Nrich) on methane production, process stability and the formation of volatile fatty acids as by-products. The highest methane amounts produced were 3.38 ± 0.37 mmol, 3.20 ± 0.07 mmol, 3.07 ± 0.27 mmol and 3.14 ± 0.06 mmol for PF, WW, S37 and Nrich, respectively. The highest acetate concentration was found in less diverse cultures (1679 mg L−1 and 1397 mg L−1 for S37 and Nrich, respectively), whereas the acetate concentrations remained below 30 mg L−1 in the more diverse cultures. The maximum concentration of propionate was observed in less diverse cultures (240 mg L−1 and 37 mg L−1 for S37 and Nrich cultures, respectively). The highly diverse cultures outperformed the medium and low diversity cultures in the long-term operation. Methanogenic communities were mainly composed of hydrogenotrophic methanogens in all cultures. Aceticlastic methanogenesis was only active in the highly diverse sludge community throughout the experiment. The more diverse the inocula, the more methane was produced and the less volatile fatty acids accumulated, which could be attributed to the high number of microbial functions working together to keep a stable and balanced process. It is concluded that the inoculum origin and its diversity are very important factors to consider when the biomethanation process is performed with complex microbial communities.
    Type of Medium: Online Resource
    ISSN: 2306-5354
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2746191-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...