GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecules, MDPI AG, Vol. 25, No. 8 ( 2020-04-17), p. 1829-
    Abstract: Ginkgo biloba leaf (GBL) is known as a potential source of bioactive flavonoids, such as quercetin, arresting the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-zippering. Here, the GBL flavonoids were isolated in two different manners and then examined for their bioactivity, physicochemical stability, and biocompatibility. The majority of flavonoids in the non-hydrolyzed and acidolyzed isolates, termed non-hydrolyzed isolate (NI) and acidolyzed isolate (AI) hereafter, were rich in flavonol glycosides and aglycones, respectively. Glycosidic/aglyconic quercetin and kaempferol were abundant in both NI and AI, whereas a little of apigenin, luteolin, and isorhamnetin were found in AI. NI was more thermostable in all pH ranges than quercetin, kaempferol, and AI. NI and AI both inhibited neurotransmitter release from differentiated neuronal PC-12 cells. NI and AI showed 1/2–1/3 lower EC50/CC50 values than quercetin and kaempferol. The NI and AI exhibited no toxicity assessed by the tests on chorioallantoic membranes of hen’s eggs, removing toxicological concerns of irritation potential. Moreover, GBL isolates, particularly AI, showed antioxidant and anti-inflammatory activities in the use below the CC50 levels. Taken together, these results suggest that GBL isolates that are rich in antioxidant flavonoids are effective anti-neuroexocytotic agents with high stability and low toxicity.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Agriculture, MDPI AG, Vol. 12, No. 2 ( 2022-01-18), p. 123-
    Abstract: This study was conducted to ensure gear durability and design optimal transmission of agricultural tractors. A field test was conducted using an 86 kW agricultural tractor for plow and rotary tillage, which are typical agricultural operations. The field test was completed after about 107 h due to transmission noise and operational problems. As a result of disassembling the transmission, it was found that the range shift A and B gears were damaged. In the case of the range shift A gear, it was judged that plastic deformation occurred due to low contact stress, and the bending stress was low, therefore gear tooth breakage occurred in the range shift B gear. In order to ensure the durability of the transmission, four materials of alloy steel for machine structural use, such as SCr420, SNCM220, SCM822, and SNC815, were selected, and the safety factor and service life according to the gear materials were compared using simulation software. As a result of simulation analysis, SCM822 satisfied the target life value and was selected as a material for change. The damaged range shift A and B gears were changed to SCM822, and an axle dynamometer test was performed for the verification of the modified transmission. After conducting the axle dynamometer test, the transmission was disassembled, and it was confirmed that the range shift A and B gears were in normal condition. Therefore, it was considered that the durability of the transmission was ensured by satisfying the target life requirements of the gears. In the future, the transmission simulation model for 86 kW class agricultural tractor is expected to be utilized for the development of tractor transmissions, cost reduction, and optimal design.
    Type of Medium: Online Resource
    ISSN: 2077-0472
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2651678-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Sensors, MDPI AG, Vol. 22, No. 3 ( 2022-01-20), p. 785-
    Abstract: This study aims to design, develop, and evaluate the traction performance of an electric all-wheel-drive (AWD) tractor based on the power transmission and electric systems. The power transmission system includes the electric motor, helical gear reducer, planetary gear reducer, and tires. The electric system consists of a battery pack and charging system. An engine-generator and charger are installed to supply electric energy in emergency situations. The load measurement system consists of analog (current) and digital (battery voltage and rotational speed of the electric motor) components using a controller area network (CAN) bus. A traction test of the electric AWD tractor was performed towing a test vehicle. The output torques of the tractor motors during the traction test were calculated using the current and torque curves provided by the motor manufacturer. The agricultural work performance is verified by comparing the torque and rpm (T–N) curve of the motor with the reduction ratio applied. The traction is calculated using torque and specifications of the wheel, and traction performance is evaluated using tractive efficiency (TE) and dynamic ratio (DR). The results suggest a direction for the improvement of the electric drive system in agricultural research by comparison with the conventional tractor through the analysis of the agricultural performance and traction performance of the electric AWD tractor.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Sensors Vol. 21, No. 14 ( 2021-07-14), p. 4801-
    In: Sensors, MDPI AG, Vol. 21, No. 14 ( 2021-07-14), p. 4801-
    Abstract: Machine vision with deep learning is a promising type of automatic visual perception for detecting and segmenting an object effectively; however, the scarcity of labelled datasets in agricultural fields prevents the application of deep learning to agriculture. For this reason, this study proposes weakly supervised crop area segmentation (WSCAS) to identify the uncut crop area efficiently for path guidance. Weakly supervised learning has advantage for training models because it entails less laborious annotation. The proposed method trains the classification model using area-specific images so that the target area can be segmented from the input image based on implicitly learned localization. This way makes the model implementation easy even with a small data scale. The performance of the proposed method was evaluated using recorded video frames that were then compared with previous deep-learning-based segmentation methods. The results showed that the proposed method can be conducted with the lowest inference time and that the crop area can be localized with an intersection over union of approximately 0.94. Additionally, the uncut crop edge could be detected for practical use based on the segmentation results with post-image processing such as with a Canny edge detector and Hough transformation. The proposed method showed the significant ability of using automatic perception in agricultural navigation to infer the crop area with real-time level speed and have localization comparable to existing semantic segmentation methods. It is expected that our method will be used as essential tool for the automatic path guidance system of a combine harvester.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nutrients, MDPI AG, Vol. 13, No. 11 ( 2021-11-15), p. 4090-
    Abstract: Acute liver failure (ALF) refers to the sudden loss of liver function and is accompanied by several complications. In a previous study, we revealed the protective effect of Centella asiatica 50% ethanol extract (CA-HE50) on acetaminophen-induced liver injury. In the present study, we investigate the hepatoprotective effect of CA-HE50 in a lipopolysaccharide/galactosamine (LPS-D-Gal)-induced ALF animal model and compare it to existing therapeutic silymarin, Lentinus edodes mycelia (LEM) extracts, ursodeoxycholic acid (UDCA) and dimethyl diphenyl bicarboxylate (DDB). Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were decreased in the CA-HE50, silymarin, LEM, UDCA and DDB groups compared to the vehicle control group. In particular, AST and ALT levels of the 200 mg/kg CA-HE50 group were significantly decreased compared to positive control groups. Lactate dehydrogenase (LDH) levels were significantly decreased in the CA-HE50, silymarin, LEM, UDCA and DDB groups compared to the vehicle control group and LDH levels of the 200 mg/kg CA-HE50 group were similar to those of the positive control groups. Superoxide dismutase (SOD) activity was significantly increased in the 100 mg/kg CA-HE50, LEM and UDCA groups compared to the vehicle control group and, in particular, the 100 mg/kg CA-HE50 group increased significantly compared to positive control groups. In addition, the histopathological lesion score was significantly decreased in the CA-HE50 and positive control groups compared with the vehicle control group and the histopathological lesion score of the 200 mg/kg CA-HE50 group was similar to that of the positive control groups. These results show that CA-HE50 has antioxidant and hepatoprotective effects at a level similar to that of silymarin, LEM, UDCA and DDB, which are known to have hepatoprotective effects; further, CA-HE50 has potential as a prophylactic and therapeutic agent in ALF.
    Type of Medium: Online Resource
    ISSN: 2072-6643
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2518386-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Pharmaceuticals, MDPI AG, Vol. 14, No. 7 ( 2021-07-04), p. 642-
    Abstract: Insulin resistance, which occurs when insulin levels are sufficiently high over a prolonged period, causing the cells to fail to respond normally to the hormone. As a system for insulin resistance and diabetes drug development, insulin-resistant rodent models have been clearly established, but there is a limitation to high-throughput drug screening. Recently, zebrafish have been identified as an excellent system for drug discovery and identification of therapeutic targets, but studies on insulin resistance models have not been extensively performed. Therefore, we aimed to make a rapid insulin-resistant zebrafish model that complements the existing rodent models. To establish this model, zebrafish were treated with 10 μM insulin for 48 h. This model showed characteristics of insulin-resistant disease such as damaged pancreatic islets. Then we confirmed the recovery of the pancreatic islets after pioglitazone treatment. In addition, it was found that insulin-resistant drugs have as significant an effect in zebrafish as in humans, and these results proved the value of the zebrafish insulin resistance model for drug selection. In addition, RNA sequencing was performed to elucidate the mechanism involved. KEGG pathway enrichment analysis of differentially expressed genes showed that insulin resistance altered gene expression due to the MAPK signaling and calcium signaling pathways. This model demonstrates the utility of the zebrafish model for drug testing and drug discovery in insulin resistance and diabetes.
    Type of Medium: Online Resource
    ISSN: 1424-8247
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2193542-7
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Sensors, MDPI AG, Vol. 20, No. 21 ( 2020-10-28), p. 6126-
    Abstract: Pre-impact fall detection can detect a fall before a body segment hits the ground. When it is integrated with a protective system, it can directly prevent an injury due to hitting the ground. An impact acceleration peak magnitude is one of key measurement factors that can affect the severity of an injury. It can be used as a design parameter for wearable protective devices to prevent injuries. In our study, a novel method is proposed to predict an impact acceleration magnitude after loss of balance using a single inertial measurement unit (IMU) sensor and a sequential-based deep learning model. Twenty-four healthy participants participated in this study for fall experiments. Each participant worn a single IMU sensor on the waist to collect tri-axial accelerometer and angular velocity data. A deep learning method, bi-directional long short-term memory (LSTM) regression, is applied to predict a fall’s impact acceleration magnitude prior to fall impact (a fall in five directions). To improve prediction performance, a data augmentation technique with increment of dataset is applied. Our proposed model showed a mean absolute percentage error (MAPE) of 6.69 ± 0.33% with r value of 0.93 when all three different types of data augmentation techniques are applied. Additionally, there was a significant reduction of MAPE by 45.2% when the number of training datasets was increased by 4-fold. These results show that impact acceleration magnitude can be used as an activation parameter for fall prevention such as in a wearable airbag system by optimizing deployment process to minimize fall injury in real time.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Coatings, MDPI AG, Vol. 11, No. 5 ( 2021-04-25), p. 503-
    Abstract: The dimple occurs by sudden pressure inversion at the droplet’s bottom interface when a droplet collides with the same liquid-phase or different solid-phase. The air film entrapped inside the dimple is a critical factor affecting the sequential dynamics after coalescence and causing defects like the pinhole. Meanwhile, in the coalescence dynamics of an electrified droplet, the droplet’s bottom interfaces change to a conical shape, and droplet contact the substrate directly without dimple formation. In this work, the mechanism for the dimple’s suppression (interfacial change to conical shape) was studied investigating the effect of electric pressure. The electric stress acting on a droplet interface shows the nonlinear electric pressure adding to the uniform droplet pressure. This electric stress locally deforms the droplet’s bottom interface to a conical shape and consequentially enables it to overcome the air pressure beneath the droplet. The electric pressure, calculated from numerical tracking for interface and electrostatic simulation, was at least 108 times bigger than the air pressure at the center of the coalescence. This work helps toward understanding the effect of electric stress on droplet coalescence and in the optimization of conditions in solution-based techniques like printing and coating.
    Type of Medium: Online Resource
    ISSN: 2079-6412
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662314-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Applied Sciences, MDPI AG, Vol. 11, No. 13 ( 2021-07-05), p. 6205-
    Abstract: The strut chordae (SC) have a unique structure and play an important role in reinforcing the tunnel-shaped configuration of the mitral valve (MV) at the inflow and outflow tracts. We investigated the effect of varying the SC insertion location on normal MV function and dynamics to better understand the complex MV structures. A virtual parametric MV model was designed to replicate a normal human MV, and a total of nine MV modes were created from combinations of apical and lateral displacements of the SC insertion location. MV function throughout the full cardiac cycle was simulated using dynamic finite element analysis for all MV models. While the leaflet stress distribution and coaptation showed similar patterns in all nine MV models, the maximum leaflet stress values increased in proportion to the width of the SC insertion locations. A narrower SC insertion location resulted in a longer coaptation length and a smaller anterior coaptation angle. The top-narrow MV model demonstrated the shortest anterior leaflet bulging distance, lower stresses across the anterior leaflet, and the lowest maximum stresses. This biomechanical evaluation strategy can help us better understand the effect of the SC insertion locations on mechanism, function, and pathophysiology of the MV.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Sensors, MDPI AG, Vol. 18, No. 4 ( 2018-04-17), p. 1227-
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...