GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (1,347)
  • 1
    In: Molecules, MDPI AG, Vol. 23, No. 8 ( 2018-08-16), p. 2057-
    Abstract: This study investigated the effects of 2-(4-(5-chlorobenzo[d]thiazol-2-yl)phenoxy)-2,2-difluoroacetic acid (MHY3200) on high-fat diet (HFD)-induced hepatic lipid accumulation and inflammation. The measurement of peroxisome proliferator-activated receptor (PPAR)α activity by using a luciferase assay indicated that MHY3200 was more potent than a known PPARα agonist, WY14643, in AC2F cells. Six-month-old male SD rats were fed chow or HFD for 1 month, and after, with or without added MHY3200 (1 or 2 mg/kg/day) for 4 weeks. The oral administration of MHY3200 caused a significant decrease in serum triglyceride (TG), glucose, alanine aminotransferase, and insulin, as well as a slight decrease in the level of free fatty acid and aspartate transaminase. No weight gain was detected when compared with HFD rats, and hepatic TG content was also attenuated by the administration of MHY3200. Furthermore, phosphorylation of the ER stress marker, inositol-requiring kinase 1 and its downstream gene, c-Jun N-terminal kinase, in addition to serine phosphorylation of insulin receptor substrate 1 were suppressed by MHY3200. Consistent with these results, MHY3200 administration reduced the levels of activation of protein-1, cyclooxygenase-2, and inducible nitric oxide synthase. Our results suggested that MHY3200 ameliorated HFD-induced hepatic lipid accumulation and inflammation, and improved insulin resistance through PPARα activation.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 11 ( 2021-05-31), p. 5957-
    Abstract: Although recent studies suggest that the plant cytoskeleton is associated with plant stress responses, such as salt, cold, and drought, the molecular mechanism underlying microtubule function in plant salt stress response remains unclear. We performed a comparative proteomic analysis between control suspension-cultured cells (A0) and salt-adapted cells (A120) established from Arabidopsis root callus to investigate plant adaptation mechanisms to long-term salt stress. We identified 50 differentially expressed proteins (45 up- and 5 down-regulated proteins) in A120 cells compared with A0 cells. Gene ontology enrichment and protein network analyses indicated that differentially expressed proteins in A120 cells were strongly associated with cell structure-associated clusters, including cytoskeleton and cell wall biogenesis. Gene expression analysis revealed that expressions of cytoskeleton-related genes, such as FBA8, TUB3, TUB4, TUB7, TUB9, and ACT7, and a cell wall biogenesis-related gene, CCoAOMT1, were induced in salt-adapted A120 cells. Moreover, the loss-of-function mutant of Arabidopsis TUB9 gene, tub9, showed a hypersensitive phenotype to salt stress. Consistent overexpression of Arabidopsis TUB9 gene in rice transgenic plants enhanced tolerance to salt stress. Our results suggest that microtubules play crucial roles in plant adaptation and tolerance to salt stress. The modulation of microtubule-related gene expression can be an effective strategy for developing salt-tolerant crops.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 3 ( 2021-01-28), p. 1314-
    Abstract: Global warming has an impact on crop growth and development. Flowering time is particularly sensitive to environmental factors such as day length and temperature. In this study, we investigated the effects of global warming on flowering using an open-top Climatron chamber, which has a higher temperature and CO2 concentration than in the field. Two different soybean cultivars, Williams 82 and IT153414, which exhibited different flowering times, were promoted flowering in the open-top Climatron chamber than in the field. We more specifically examined the expression patterns of soybean flowering genes on the molecular level under high-temperature conditions. The elevated temperature induced the expression of soybean floral activators, GmFT2a and GmFT5a as well as a set of GmCOL genes. In contrast, it suppressed floral repressors, E1 and E2 homologs. Moreover, high-temperature conditions affected the expression of these flowering genes in a day length-independent manner. Taken together, our data suggest that soybean plants properly respond and adapt to changing environments by modulating the expression of a set of flowering genes in the photoperiod pathway for the successful production of seeds and offspring.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Plants, MDPI AG, Vol. 10, No. 5 ( 2021-04-21), p. 831-
    Abstract: Plants possess adaptive reprogramed modules to prolonged environmental stresses, including adjustment of metabolism and gene expression for physiological and morphological adaptation. CCoAOMT1 encodes a caffeoyl CoA O-methyltransferase and is known to play an important role in adaptation of Arabidopsis plants to prolonged saline stress. In this study, we showed that the CCoAOMT1 gene plays a role in drought stress response. Transcript of CCoAOMT1 was induced by salt, dehydration (drought), and methyl viologen (MV), and loss of function mutants of CCoAOMT1, ccoaomt1-1, and ccoaomt1-2 exhibit hypersensitive phenotypes to drought and MV stresses. The ccoaomt1 mutants accumulated higher level of H2O2 in the leaves and expressed lower levels of drought-responsive genes including RD29B, RD20, RD29A, and ERD1, as well as ABA3 3 and NCED3 encoding ABA biosynthesis enzymes during drought stress compared to wild-type plants. A seed germination assay of ccoaomt1 mutants in the presence of ABA also revealed that CCoAOMT1 functions in ABA response. Our data suggests that CCoAOMT1 plays a positive role in response to drought stress response by regulating H2O2 accumulation and ABA signaling.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Pharmaceuticals, MDPI AG, Vol. 16, No. 3 ( 2023-02-24), p. 349-
    Abstract: The simultaneous drug delivery efficiency of a co-loaded single-carrier system of docetaxel (DTX)- and tariquidar (TRQ)-loaded nanostructured lipid carrier (NLC) functionalized with PEG and RIPL peptide (PRN) (D^T-PRN) was compared with that of a physically mixed dual-carrier system of DTX-loaded PRN (D-PRN) and TRQ-loaded PRN (T-PRN) to overcome DTX mono-administration-induced multidrug resistance. NLC samples were prepared using the solvent emulsification evaporation technique and showed homogeneous spherical morphology, with nano-sized dispersion ( 〈 220 nm) and zeta potential values of −15 to −7 mV. DTX and/or TRQ was successfully encapsulated in NLC samples ( 〉 95% encapsulation efficiency and 73–78 µg/mg drug loading). In vitro cytotoxicity was concentration-dependent; D^T-PRN exhibited the highest MDR reversal efficiency, with the lowest combination index value, and increased the cytotoxicity and apoptosis in MCF7/ADR cells by inducing cell-cycle arrest in the G2/M phase. A competitive cellular uptake assay using fluorescent probes showed that, compared to the dual nanocarrier system, the single nanocarrier system exhibited better intracellular delivery efficiency of multiple probes to target cells. In the MCF7/ADR-xenografted mouse models, simultaneous DTX and TRQ delivery using D^T-PRN significantly suppressed tumor growth as compared to other treatments. A single co-loaded system for PRN-based co-delivery of DTX/TRQ (1:1, w/w) constitutes a promising therapeutic strategy for drug-resistant breast cancer cells.
    Type of Medium: Online Resource
    ISSN: 1424-8247
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2193542-7
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 14 ( 2023-07-14), p. 11477-
    Abstract: The calmodulin-binding transcription activators (CAMTAs) mediate transcriptional regulation of development, growth, and responses to various environmental stresses in plants. To understand the biological roles of soybean CAMTA (GmCAMTA) family members in response to abiotic stresses, we characterized expression patterns of 15 GmCAMTA genes in response to various abiotic stresses. The GmCAMTA genes exhibited distinct circadian regulation expression patterns and were differently expressed in response to salt, drought, and cold stresses. Interestingly, the expression levels of GmCAMTA2, GmCAMTA8, and GmCAMTA12 were higher in stem tissue than in other soybean tissues. To determine the roles of GmCAMTAs in the regulation of developmental processes and stress responses, we isolated GmCAMTA2 and GmCAMTA8 cDNAs from soybean and generated Arabidopsis overexpressing transgenic plants. The GmCAMTA2-OX and GmCAMTA8-OX plants showed hypersensitivity to drought stress. The water in the leaves of GmCAMTA2-OX and GmCAMTA8-OX plants was lost faster than that in wild-type (WT) plants under drought-stress conditions. In addition, stress-responsive genes were down-regulated in the GmCAMTA2-OX and GmCAMTA8-OX plants under drought stress conditions compared to WT plants. Our results suggest that GmCAMTA2 and GmCAMTA8 genes are regulated by circadian rhythms and function as negative regulators in development and drought stress responses.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Atmosphere, MDPI AG, Vol. 12, No. 1 ( 2021-01-06), p. 72-
    Abstract: Understanding the response of the Earth system to CO2 removal (CDR) is crucial because the possibility of irreversibility exists. Therefore, the Carbon Dioxide Removal Model Inter-comparison Project (CDRMIP) for the protocol experiment in the Coupled Model Inter-comparison Project Phase 6 (CMIP6) has been developed. Our analysis focuses on the regional response in the hydrological cycle, especially in East Asia (EA). The peak temperature changes in EA (5.9 K) and the Korean peninsula (KO) (6.1 K) are larger than the global mean surface air temperature (GSAT) response. The precipitation changes are approximately 9.4% (EA) and 23.2% (KO) at the phase change time (130–150 years); however, the largest increase is approximately 16.6% (EA) and 36.5% (KO) in the ramp-down period (150–160 years). In addition, the differences are below 5 mm/day and 1 day for the precipitation intensity indices (Rx1day and Rx5day) and frequency indices (R95 and R99), respectively. Furthermore, the monsoon rainband of the ramp-down period moves northward as the earlier onset with high confidence compared to the ramp-up period; however, it does not move north to the KO region. The results suggest that reducing CO2 moves the rainband southward. However, a detailed interpretation in terms of the mechanism needs to be carried out in further research.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Genes, MDPI AG, Vol. 12, No. 2 ( 2021-02-11), p. 264-
    Abstract: Bisphenol A (BPA) is a xenoestrogen chemical commonly used to manufacture polycarbonate plastics and epoxy resin and might affect various human organs. However, the cellular effects of BPA on the eyes have not been widely investigated. This study aimed to investigate the cellular cytotoxicity by BPA exposure on human retinoblastoma cells. BPA did not show cytotoxic effects, such as apoptosis, alterations to cell viability and cell cycle regulation. Comparative analysis of the transcriptome and proteome profiles were investigated after long-term exposure of Y79 cells to low doses of BPA. Transcriptome analysis using RNA-seq revealed that mRNA expression of the post-transcriptional regulation-associated gene sets was significantly upregulated in the BPA-treated group. Cell cycle regulation-associated gene sets were significantly downregulated by exposure to BPA. Interestingly, RNA-seq analysis at the transcript level indicated that alternative splicing events, particularly retained introns, were noticeably altered by low-dose BPA treatment. Additionally, proteome profiling using MALDI-TOF-MS identified a total of nine differentially expressed proteins. These results suggest that alternative splicing events and altered gene/protein expression patterns are critical phenomena affected by long-term low-dose BPA exposure. This represents a novel marker for the detection of various diseases associated with environmental pollutants such as BPA.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 4 ( 2021-02-18), p. 2006-
    Abstract: Mercury is one of the detrimental toxicants that can be found in the environment and exists naturally in different forms; inorganic and organic. Human exposure to inorganic mercury, such as mercury chloride, occurs through air pollution, absorption of food or water, and personal care products. This study aimed to investigate the effect of HgCl2 on cell viability, cell cycle, apoptotic pathway, and alters of the transcriptome profiles in human non-small cell lung cancer cells, H1299. Our data show that HgCl2 treatment causes inhibition of cell growth via cell cycle arrest at G0/G1- and S-phase. In addition, HgCl2 induces apoptotic cell death through the caspase-3-independent pathway. Comprehensive transcriptome analysis using RNA-seq indicated that cellular nitrogen compound metabolic process, cellular metabolism, and translation for biological processes-related gene sets were significantly up- and downregulated by HgCl2 treatment. Interestingly, comparative gene expression patterns by RNA-seq indicated that mitochondrial ribosomal proteins were markedly altered by low-dose of HgCl2 treatment. Altogether, these data show that HgCl2 induces apoptotic cell death through the dysfunction of mitochondria.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 5 ( 2021-03-02), p. 2494-
    Abstract: Heavy metals are important for various biological systems, but, in excess, they pose a serious risk to human health. Heavy metals are commonly used in consumer and industrial products. Despite the increasing evidence on the adverse effects of heavy metals, the detailed mechanisms underlying their action on lung cancer progression are still poorly understood. In the present study, we investigated whether heavy metals (mercury chloride and lead acetate) affect cell viability, cell cycle, and apoptotic cell death in human lung fibroblast MRC5 cells. The results showed that mercury chloride arrested the sub-G1 and G2/M phases by inducing cyclin B1 expression. In addition, the exposure to mercury chloride increased apoptosis through the activation of caspase-3. However, lead had no cytotoxic effects on human lung fibroblast MRC5 cells at low concentration. These findings demonstrated that mercury chloride affects the cytotoxicity of MRC5 cells by increasing cell cycle progression and apoptotic cell death.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...