GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Catalysts Vol. 10, No. 1 ( 2020-01-09), p. 95-
    In: Catalysts, MDPI AG, Vol. 10, No. 1 ( 2020-01-09), p. 95-
    Abstract: CO2 emissions from the consumption of fossil fuels are continuously increasing, thus impacting Earth’s climate. In this context, intensive research efforts are being dedicated to develop materials that can effectively reduce CO2 levels in the atmosphere and convert CO2 into value-added chemicals and fuels, thus contributing to sustainable energy and meeting the increase in energy demand. The development of clean energy by conversion technologies is of high priority to circumvent these challenges. Among the various methods that include photoelectrochemical, high-temperature conversion, electrocatalytic, biocatalytic, and organocatalytic reactions, photocatalytic CO2 reduction has received great attention because of its potential to efficiently reduce the level of CO2 in the atmosphere by converting it into fuels and value-added chemicals. Among the reported CO2 conversion catalysts, perovskite oxides catalyze redox reactions and exhibit high catalytic activity, stability, long charge diffusion lengths, compositional flexibility, and tunable band gap and band edge. This review focuses on recent advances and future prospects in the design and performance of perovskites for CO2 conversion, particularly emphasizing on the structure of the catalysts, defect engineering and interface tuning at the nanoscale, and conversion technologies and rational approaches for enhancing CO2 transformation to value-added chemicals and chemical feedstocks.
    Type of Medium: Online Resource
    ISSN: 2073-4344
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662126-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nanomaterials, MDPI AG, Vol. 10, No. 11 ( 2020-11-04), p. 2198-
    Abstract: “Bottom-up” additive manufacturing (AM) is the technology whereby a digitally designed structure is built layer-by-layer, i.e., differently than by traditional manufacturing techniques based on subtractive manufacturing. AM, as exemplified by 3D printing, has gained significant importance for scientists, among others, in the fields of catalysis and separation. Undoubtedly, it constitutes an enabling pathway by which new complex, promising and innovative structures can be built. According to recent studies, 3D printing technologies have been utilized in enhancing the heat, mass transfer, adsorption capacity and surface area in CO2 adsorption and separation applications and catalytic reactions. However, intense work is needed in the field to address further challenges in dealing with the materials and metrological features of the structures involved. Although few studies have been performed, the promise is there for future research to decrease carbon emissions and footprint. This review provides an overview on how AM is linked to the chemistry of catalysis and separation with particular emphasis on reforming reactions and carbon adsorption and how efficient it could be in enhancing their performance.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...