GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 24 ( 2021-12-15), p. 13458-
    Abstract: Oxidative stress from high levels of intracellular reactive oxygen species (ROS) has been linked to various bone diseases. Previous studies indicate that mesenchymal stem cells (MSC) secrete bioactive factors (conditioned medium (MSC-CM)) that have antioxidant effects. However, the antioxidant role of MSC-CM on osteogenesis has not been fully studied. We aimed to identify antioxidant proteins in MSC-CM using mass spectrometry-based proteomics and to explore their effects on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSC) exposed to oxidative stress induced by hydrogen peroxide (H2O2). Our analysis revealed that MSC-CM is comprised of antioxidant proteins that are involved in several biological processes, including negative regulation of apoptosis and positive regulation of cell proliferation. Then, hBMSC exposed to H2O2 were treated with MSC-CM, and the effects on their osteogenic differentiation were evaluated. MSC-CM restored H2O2-induced damage to hBMSC by increasing the antioxidant enzyme-SOD production and the mRNA expression level of the anti-apoptotic BCL-2. A decrease in ROS production and cellular apoptosis was also shown. MSC-CM also modulated mRNA expression levels of osteogenesis-related genes, runt-related transcription factor 2, collagen type I, bone morphogenic protein 2, and osteopontin. Furthermore, collagen type I protein secretion, alkaline phosphatase activity, and in vitro mineralization were increased. These results indicate that MSC-CM contains several proteins with antioxidant and anti-apoptotic properties that restored the impaired hBMSC osteogenic differentiation associated with oxidative stress.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Horticulturae, MDPI AG, Vol. 9, No. 6 ( 2023-06-13), p. 696-
    Abstract: The current study was designed to assess the comparative morphology of eight olive cultivars with different geographical origins and diverse genetic backgrounds, introduced to a new climatic zone. The morphological parameters of eight (five exotic and three domestic) olive cultivars (Bari Zaitoon-1, Bari Zaitoon-2, Favolosa (FS-17), Koroneiki, Balkasar, Ottobratica, Leccino, and Arbequina) were compared at the experimental area of the Department of Botany, The Islamia University of Bahawalpur, Pakistan (29°24′0″ North, 71°41′0″ East, 401–421 feet above sea level). Plant height, number of leaves/15 cm shoot, leaf size characteristics (leaf length, leaf width, leaf area, and length/width ratio), leaf shape characteristics (margin, leaf axil, base, and apex angles), leaf pigments (Chlorophyll a, Chlorophyll b, total chlorophyll contents, and carotenoids), phyllotaxy, and leaf color and venation were recorded. The highest plant height (28 cm) was obtained by Bari Zaitoon-2 followed by Bari Zaitoon-1 (24 cm), both of which are domestic cultivar of Pakistan, while the shortest height (5 cm) was obtained by Koroneiki. Leccino displayed the highest average number of leaves (17.8) on main shoot, followed by BARI-2 (16.4) and the lowest score was from Balkasar (10.4). Leaf area ranged from 5.66 cm2 (Bari Zaitoon-1) to 3.08 cm2 (Koroneiki). The longest leaf length (5.74 cm) was found in Bari Zaitoon-1 and the shortest (4.04 cm) in Koroneiki, while the broadest leaves were found in Leccino (1.54 cm) and the narrowest (1.12 cm) in Koroneiki. Bari Zaitoon-2 led in leaf length to width ratio (4.058) followed by Bari Zaitoon-1 (3.772) with small lanceolate leaves hardly reaching the value of 4, with the lowest value illustrated by Leccino. The total chloroplast pigments were highest in FS-17 followed by Bari Zaitoon-1 and Bari Zaitoon-2, while the lowest was in Arbequina. Chlorophyll a was highest in Bari Zaitoon-1 followed by FS-17 and Balkasar, with the lowest rate in Arbequina. Chlorophyll b content of FS-17 was the highest whereas the Chlorophyll b and total chlorophyll contents in Arbequina were the lowest of all the cultivars. The highest value of total carotenoids was found in Balkasar followed by FS-17 with the lowest value in Arbequina. The phyllotaxy was categorized into three types, i.e., alternate, opposite, and whorled. The combination of two or more types was usually observed on the same branch. The whorl of four leaves was also present in rare cases. Leaf venation was both pinnate and reticulate. The leaf base of most (four) of the olive cultivars, i.e., Arbequina, Balkasar, Leccino and FS-17, were cuneate having acute, rounded, apiculate, and cuspidate leaf tips, respectively. The findings revealed remarkable variations in olive morphology, especially in the leaves and a successful record of the preliminary data of olive cultivars from the study area was made. The present research demonstrated that local olive cultivars have unique characteristics that differentiate them from imported cultivars. Thus, local cultivars provide novel genetic resources that should be conserved.
    Type of Medium: Online Resource
    ISSN: 2311-7524
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2813983-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cells, MDPI AG, Vol. 12, No. 5 ( 2023-02-28), p. 767-
    Abstract: Functionalizing biomaterials with conditioned media (CM) from mesenchymal stromal cells (MSC) is a promising strategy for enhancing the outcomes of guided bone regeneration (GBR). This study aimed to evaluate the bone regenerative potential of collagen membranes (MEM) functionalized with CM from human bone marrow MSC (MEM-CM) in critical size rat calvarial defects. MEM-CM prepared via soaking (CM-SOAK) or soaking followed by lyophilization (CM-LYO) were applied to critical size rat calvarial defects. Control treatments included native MEM, MEM with rat MSC (CEL) and no treatment. New bone formation was analyzed via micro-CT (2 and 4 weeks) and histology (4 weeks). Greater radiographic new bone formation occurred at 2 weeks in the CM-LYO group vs. all other groups. After 4 weeks, only the CM-LYO group was superior to the untreated control group, whereas the CM-SOAK, CEL and native MEM groups were similar. Histologically, the regenerated tissues showed a combination of regular new bone and hybrid new bone, which formed within the membrane compartment and was characterized by the incorporation of mineralized MEM fibers. Areas of new bone formation and MEM mineralization were greatest in the CM-LYO group. Proteomic analysis of lyophilized CM revealed the enrichment of several proteins and biological processes related to bone formation. In summary, lyophilized MEM-CM enhanced new bone formation in rat calvarial defects, thus representing a novel ‘off-the-shelf’ strategy for GBR.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 17 ( 2023-08-22), p. 13057-
    Abstract: Secretomes of mesenchymal stromal cells (MSCs) are emerging as a novel growth factor (GF)-based strategy for periodontal and bone regeneration. The objective of this study was to compare the secretome of human bone marrow MSC (BMSC) to that of leukocyte- and platelet-rich fibrin (L-PRF), an established GF-based therapy, in the context of wound healing and regeneration. Conditioned media from human BMSCs (BMSC-CM) and L-PRF (LPRF-CM) were subjected to quantitative proteomic analysis using liquid chromatography with tandem mass spectrometry. Global profiles, gene ontology (GO) categories, differentially expressed proteins (DEPs), and gene set enrichment (GSEA) were identified using bioinformatic methods. Concentrations of selected proteins were determined using a multiplex immunoassay. Among the proteins identified in BMSC-CM (2157 proteins) and LPRF-CM (1420 proteins), 1283 proteins were common. GO analysis revealed similarities between the groups in terms of biological processes (cellular organization, protein metabolism) and molecular functions (cellular/protein-binding). Notably, more DEPs were identified in BMSC-CM (n = 550) compared to LPRF-CM (n = 118); these included several key GF, cytokines, and extracellular matrix (ECM) proteins involved in wound healing. GSEA revealed enrichment of ECM (especially bone ECM)-related processes in BMSC-CM and immune-related processes in LPRF-CM. Similar trends for intergroup differences in protein detection were observed in the multiplex analysis. Thus, the secretome of BMSC is enriched for proteins/processes relevant for periodontal and bone regeneration. The in vivo efficacy of this therapy should be evaluated in future studies.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Sensors, MDPI AG, Vol. 23, No. 8 ( 2023-04-11), p. 3889-
    Abstract: The second leading cause of death and one of the most common causes of disability in the world is stroke. Researchers have found that brain–computer interface (BCI) techniques can result in better stroke patient rehabilitation. This study used the proposed motor imagery (MI) framework to analyze the electroencephalogram (EEG) dataset from eight subjects in order to enhance the MI-based BCI systems for stroke patients. The preprocessing portion of the framework comprises the use of conventional filters and the independent component analysis (ICA) denoising approach. Fractal dimension (FD) and Hurst exponent (Hur) were then calculated as complexity features, and Tsallis entropy (TsEn) and dispersion entropy (DispEn) were assessed as irregularity parameters. The MI-based BCI features were then statistically retrieved from each participant using two-way analysis of variance (ANOVA) to demonstrate the individuals’ performances from four classes (left hand, right hand, foot, and tongue). The dimensionality reduction algorithm, Laplacian Eigenmap (LE), was used to enhance the MI-based BCI classification performance. Utilizing k-nearest neighbors (KNN), support vector machine (SVM), and random forest (RF) classifiers, the groups of post-stroke patients were ultimately determined. The findings show that LE with RF and KNN obtained 74.48% and 73.20% accuracy, respectively; therefore, the integrated set of the proposed features along with ICA denoising technique can exactly describe the proposed MI framework, which may be used to explore the four classes of MI-based BCI rehabilitation. This study will help clinicians, doctors, and technicians make a good rehabilitation program for people who have had a stroke.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Viruses, MDPI AG, Vol. 12, No. 5 ( 2020-05-10), p. 526-
    Abstract: The COVID-19 pandemic is due to infection caused by the novel SARS-CoV-2 virus that impacts the lower respiratory tract. The spectrum of symptoms ranges from asymptomatic infections to mild respiratory symptoms to the lethal form of COVID-19 which is associated with severe pneumonia, acute respiratory distress, and fatality. To address this global crisis, up-to-date information on viral genomics and transcriptomics is crucial for understanding the origins and global dispersion of the virus, providing insights into viral pathogenicity, transmission, and epidemiology, and enabling strategies for therapeutic interventions, drug discovery, and vaccine development. Therefore, this review provides a comprehensive overview of COVID-19 epidemiology, genomic etiology, findings from recent transcriptomic map analysis, viral-human protein interactions, molecular diagnostics, and the current status of vaccine and novel therapeutic intervention development. Moreover, we provide an extensive list of resources that will help the scientific community access numerous types of databases related to SARS-CoV-2 OMICs and approaches to therapeutics related to COVID-19 treatment.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: European Burn Journal, MDPI AG, Vol. 3, No. 4 ( 2022-11-03), p. 493-516
    Abstract: Cellular therapies for burn wound healing, including the administration of mesenchymal stem or stromal cells (MSCs), have shown promising results. This review aims to provide an overview of the current administration methods in preclinical and clinical studies of bone-marrow-, adipose-tissue-, and umbilical-cord-derived MSCs for treating burn wounds. Relevant studies were identified through a literature search in PubMed and Embase and subjected to inclusion and exclusion criteria for eligibility. Additional relevant studies were identified through a manual search of reference lists. A total of sixty-nine studies were included in this review. Of the included studies, only five had clinical data from patients, one was a prospective case–control, three were case reports, and one was a case series. Administration methods used were local injection (41% in preclinical and 40% in clinical studies), cell-seeded scaffolds (35% and 20%), topical application (17% and 60%), and systemic injection (1% and 0%). There was great heterogeneity between the studies regarding experimental models, administration methods, and cell dosages. Local injection was the most common administration method in animal studies, while topical application was used in most clinical reports. The best delivery method of MSCs in burn wounds is yet to be identified. Although the potential of MSC treatment for burn wounds is promising, future research should focus on examining the effect and scalability of such therapy in clinical trials.
    Type of Medium: Online Resource
    ISSN: 2673-1991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 3007631-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...