GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Viruses, MDPI AG, Vol. 12, No. 3 ( 2020-02-29), p. 273-
    Abstract: Hepatitis B virus (HBV) replication is controlled by four promoters (preS1, preS2, Cp, and Xp) and two enhancers (EnhI and EnhII). EnhII stimulates Cp activity to regulate the transcriptions of precore, core, polymerase, and pregenomic RNAs, and therefore, EnhII/Cp is essential for the regulation of HBV replication. This study revealed a distinct mechanism underlying the suppression of EnhII/Cp activation and HBV replication. On the one hand, the sex determining region Y box2 (SOX2), a transcription factor, is induced by HBV. On the other hand, SOX2, in turn, represses the expression levels of HBV RNAs, HBV core-associated DNA, hepatitis B surface antigen (HBsAg), and hepatitis B e antigen (HBeAg), thereby playing an inhibitory role during HBV replication. Further studies indicated that SOX2 bound to the EnhII/Cp DNA and repressed the promoter activation. With the deletion of the high mobility group (HMG) domain, SOX2 loses the ability to repress EnhII/Cp activation, viral RNA transcription, HBV core-associated DNA replication, HBsAg and HBeAg production, as well as fails to enter the nucleus, demonstrating that the HMG domain is required for the SOX2-mediated repression of HBV replication. Moreover, SOX2 represses HBsAg and HBeAg secretion in BALB/c mice sera, and attenuates HBV 3.5 kb RNA transcription and hepatitis B virus core protein (HBc) production in the liver tissues, demonstrating that SOX2 suppresses HBV replication in mice. Furthermore, the results revealed that the HMG domain was required for SOX2-mediated repression of HBV replication in the mice. Taken together, the above facts indicate that SOX2 acts as a new host restriction factor to repress HBV replication by binding to the viral EnhII/Cp and inhibiting the promoter activation through the HMG domain.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Water, MDPI AG, Vol. 14, No. 12 ( 2022-06-10), p. 1865-
    Abstract: Ozone (O3) has been widely used for water and wastewater treatment due to its strong oxidation ability, however, the utilization efficiency of O3 is constrained by its low solubility and short half-life during the treatment process. Thereby, an integrated approach using novel nanobubble technology and ozone oxidation method was studied in order to enhance the ozonization of ammonia. Artificial wastewater (AW) with an initial concentration of 1600 mg/L ammonia was used in this study. In the ozone-nanobubble treatment group, the concentration of nano-sized bubbles was 2.2 × 107 particles/mL, and the bubbles with 〈 200 nm diameter were 14 times higher than those in the ozone-macrobubble treatment control group. Ozone aeration was operated for 5 min in both nanobubble treatment and control groups, however, the sampling and measurement were conducted for 30 min to compare the utilization of O3 for ammonia oxidation. H+ was the by-product of the ammonia ozonation process, thus the pH decreased from 8 to 7 and 7.5 in nanobubble treatment and control groups, respectively, after 30 min of operation. The fast removal of ammonia was observed in both systems in the first 10 min, where the concentration of ammonia decreased from 1600 mg/L to 835 and 1110 mg/L in nanobubble treatment and control groups, respectively. In the nanobubble treatment group, ammonia concentrations kept the fast-decreasing trend and reached the final removal performance of 82.5% at the end of the experiment, which was significantly higher than that (44.2%) in the control group. Moreover, the first-order kinetic model could be used to describe the removal processes and revealed a significantly higher kinetic rate constant (0.064 min−1) compared with that (0.017 min−1) in the control group. With these results, our study highlights the viability of the proposed integrated approach to enhance the ozonation of a high level of ammonia in contaminated water.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Sustainability, MDPI AG, Vol. 14, No. 6 ( 2022-03-12), p. 3334-
    Abstract: The paradox of Chinese learners refers to a contrast between poor learning approaches and high achievement in China, which reveals a lack of sustainability in Chinese education. In addressing this paradox, Jin Li stood out by studying culture-based learning concepts and providing a comprehensive theoretical framework of the Eastern virtue model versus the Western mind model. However, this framework has not been thoroughly tested in the age of global cultural exchange, and the best learning model for learners has not been determined. This paper used both qualitative (replicating Li’s word association test) and quantitative methods to retest and enrich Li’s theory in present-day China, using four empirical studies. Studies 1 and 2 revealed the influence of global cultural exchange in narrowing the gap between the two models, with appropriate modifications made to Li’s theory. Studies 3 and 4 demonstrated that both of the two models were conducive to students’ academic achievement and creativity, greatly enriching Li’s theory. The implications of achieving a dynamic balance between the virtue model and the mind model to improve the sustainability of Chinese student development are discussed, which contributes to achieving the United Nations’ Sustainable Development Goals.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Genes, MDPI AG, Vol. 12, No. 3 ( 2021-03-14), p. 417-
    Abstract: F-box genes play an important role in the growth and development of plants, but there are few studies on its role in a plant’s response to abiotic stresses. In order to further study the functions of F-box genes in tomato (Solanum lycopersicum, Sl), a total of 139 F-box genes were identified in the whole genome of tomato using bioinformatics methods, and the basic information, transcript structure, conserved motif, cis-elements, chromosomal location, gene evolution, phylogenetic relationship, expression patterns and the expression under cold stress, drought stress, jasmonic acid (JA) treatment and salicylic acid (SA) treatment were analyzed. The results showed that SlFBX genes were distributed on 12 chromosomes of tomato and were prone to TD (tandem duplication) at the ends of chromosomes. WGD (whole genome duplication), TD, PD (proximal duplication) and TRD (transposed duplication) modes seem play an important role in the expansion and evolution of tomato SlFBX genes. The most recent divergence occurred 1.3042 million years ago, between SlFBX89 and SlFBX103. The cis-elements in SlFBX genes’ promoter regions were mainly responded to phytohormone and abiotic stress. Expression analysis based on transcriptome data and qRT-PCR (Real-time quantitative PCR) analysis of SlFBX genes showed that most SlFBX genes were differentially expressed under abiotic stress. SlFBX24 was significantly up-regulated at 12 h under cold stress. This study reported the SlFBX gene family of tomato for the first time, providing a theoretical basis for the detailed study of SlFBX genes in the future, especially the function of SlFBX genes under abiotic stress.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 20 ( 2020-10-19), p. 7734-
    Abstract: MYB transcription factors have a wide range of functions in plant growth, hormone signaling, salt, and drought tolerances. In this study, two homologous transcription factors, PtrMYB55 and PtrMYB121, were isolated and their functions were elucidated. Tissue expression analysis revealed that PtrMYB55 and PtrMYB121 had a similar expression pattern, which had the highest expression in stems. Their expression continuously increased with the growth of poplar, and the expression of PtrMYB121 was significantly upregulated in the process. The full length of PtrMYB121 was 1395 bp, and encoded protein contained 464 amino acids including conserved R2 and R3 MYB domains. We overexpressed PtrMYB121 in Arabidopsis thaliana, and the transgenic lines had the wider xylem as compared with wild-type Arabidopsis. The contents of cellulose and lignin were obviously higher than those in wild-type materials, but there was no significant change in hemicellulose. Quantitative real-time PCR demonstrated that the key enzyme genes regulating the synthesis of lignin and cellulose were significantly upregulated in the transgenic lines. Furthermore, the effector-reporter experiment confirmed that PtrMYB121 bound directly to the promoters of genes relating to the synthesis of lignin and cellulose. These results suggest that PtrMYB121 may positively regulate the formation of secondary cell wall by promoting the synthesis of lignin and cellulose.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Processes, MDPI AG, Vol. 11, No. 3 ( 2023-03-08), p. 812-
    Abstract: Air-conditioning system operation pattern recognition plays an important role in the fault diagnosis and energy saving of the building. Most machine learning methods need labeled data to train the model. However, the difficulty of obtaining labeled data is much greater than that of unlabeled data. Therefore, unsupervised clustering models are proposed to study the operation pattern recognition of the refrigeration, heating and hot water combined air-conditioning (RHHAC) system. Clustering methods selected in this study include K-means, Gaussian mixture model clustering (GMMC) and spectral clustering. Further, correlation analysis is used to eliminate the redundant characteristic variables of the clustering model. The operating data of the RHHAC system are used to evaluate the performance of proposed clustering models. The results show that clustering models, after removing redundant variables by correlation analysis, can also identify the defrosting operation mode. Moreover, for the GMMC model, the running time is reduced from 27.80 s to 10.04 s when the clustering number is 5. The clustering performance of the original feature set model is the best when the number of clusters of the spectral clustering model is two and three. The clustering hit rate is 98.99%, the clustering error rate is 0.58% and the accuracy is 99.42%.
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720994-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  International Journal of Molecular Sciences Vol. 22, No. 2 ( 2021-01-13), p. 758-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 2 ( 2021-01-13), p. 758-
    Abstract: Tomato (Solanum lycopersicum) as an important vegetable grown around the world is threatened by many diseases, which seriously affects its yield. Therefore, studying the interaction between tomato and pathogenic bacteria is biologically and economically important. The TPR (Tetratricopeptide repeat) gene family is a class of genes containing TPR conserved motifs, which are widely involved in cell cycle regulation, gene expression, protein degradation and other biological processes. The functions of TPR gene in Arabidopsis and wheat plants have been well studied, but the research on TPR genes in tomato is not well studied. In this study, 26 TPR gene families were identified using bioinformatics based on tomato genome data, and they were analyzed for subcellular localization, phylogenetic evolution, conserved motifs, tissue expression, and GO (Gene Ontology) analysis. The qRT-PCR was used to detect the expression levels of each member of the tomato TPR gene family (SlTPRs) under biological stress (Botrytis cinerea) and abiotic stress such as drought and abscisic acid (ABA). The results showed that members of the tomato TPR family responded to various abiotic stresses and Botrytis cinerea stress, and the SlTPR2 and SlTPR4 genes changed significantly under different stresses. Using VIGS (Virus-induced gene silencing) technology to silence these two genes, the silenced plants showed reduced disease resistance. It was also shown that TPR4 can interact with atpA which encodes a chloroplast ATP synthase CF1 α subunit. The above results provide a theoretical basis for further exploring the molecular mechanism of TPR-mediated resistance in disease defense, and also provide a foundation for tomato disease resistance breeding.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  International Journal of Molecular Sciences Vol. 21, No. 1 ( 2019-12-23), p. 110-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 1 ( 2019-12-23), p. 110-
    Abstract: The calcineurin B-like interacting protein kinase (CIPK) protein family is a critical protein family in plant signaling pathways mediated by Ca2+, playing a pivotal role in plant stress response and growth. However, to the best of our knowledge, no study of the tomato CIPK gene family in response to abiotic stress has been reported. In this study, 22 members of the tomato CIPK gene family were successfully identified by using a combination of bioinformatics techniques and molecular analyses. The expression level of each member of tomato CIPK gene family under abiotic stress (low temperature, high salt, drought treatment) was determined by qRT-PCR. Results indicated that tomato CIPK demonstrated different degrees of responding to various abiotic stresses, and changes in SlCIPK1 and SlCIPK8 expression level were relatively apparent. The results of qRT-PCR showed that expression levels of SlCIPK1 increased significantly in early stages of cold stress, and the expression level of SlCIPK8 increased significantly during the three treatments at different time points, implicating Solanum lycopersicum CIPK1(SlCIPK1) and Solanum lycopersicum CIPK8 (SlCIPK8) involvement in abiotic stress response. SlCIPK1 and SlCIPK8 were silenced using Virus-induced gene silencing (VIGS), and physiological indexes were detected by low temperature, drought, and high salt treatment. The results showed that plants silenced by SlCIPK1 and SlCIPK8 at the later stage of cold stress were significantly less resistant to cold than wild-type plants. SlCIPK1 and SlCIPK8 silenced plants had poor drought resistance, indicating a relationship between SlCIPK1 and SlCIPK8 with response to low temperature and drought resistance. This is the first study to uncover the nucleotide sequence for tomato CIPK family members and systematically study the changes of tomato CIPK family members under abiotic stress. Here, we investigate the CIPK family’s response under abiotic stress providing understanding into the signal transduction pathway. This study provides a theoretical basis for elucidating the function of tomato CIPK at low temperature and its molecular mechanism of regulating low temperatures.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 19, No. 8 ( 2018-07-30), p. 2221-
    Abstract: To investigate whether the ech42 gene in Clonostachysrosea can improve the biocontrol efficacy of Bacillus amyloliquefaciens and its molecular mechanism. Compared to the wild type, the B. amyloliquefaciens transformed with the ech42 gene exhibited higher chitinase activity. The B. amyloliquefaciens-ech42 also showed significantly higher biocontrol efficiency compared to Botrytiscinerea when tomato plants were pre-treated with B. amyloliquefaciens-ech42. No significant difference in biocontrol efficiency was observed between the wild type and B.amyloliquefaciens-ech42 when tomato plants were first infected by Botrytiscinerea. In addition, the activity of the defense-related enzyme polyphenol oxidase, but not superoxide dismutase, was significantly higher in B. amyloliquefaciens-ech42 than in the wild type. The ech42 enhances the biocontrol efficiency of B.amyloliquefaciens by increasing the capacity of preventative/curative effects in plants, rather than by killing the pathogens.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Remote Sensing Vol. 15, No. 16 ( 2023-08-15), p. 4036-
    In: Remote Sensing, MDPI AG, Vol. 15, No. 16 ( 2023-08-15), p. 4036-
    Abstract: Detecting impact craters on the Martian surface is a critical component of studying Martian geomorphology and planetary evolution. Accurately determining impact crater boundaries, which are distinguishable geomorphic units, is important work in geological and geomorphological mapping. The Martian topography is more complex than that of the Moon, making the accurate detection of impact crater boundaries challenging. Currently, most techniques concentrate on replacing impact craters with circles or points. Accurate boundaries are more challenging to identify than simple circles. Therefore, a boundary delineator for Martian crater instances (BDMCI) using fusion data is proposed. First, the optical image, digital elevation model (DEM), and slope of elevation difference after filling the DEM (called slope of EL_Diff to highlight the boundaries of craters) were used in combination. Second, a benchmark dataset with annotations for accurate impact crater boundaries was created, and sample regions were chosen using prior geospatial knowledge and an optimization strategy for the proposed BDMCI framework. Third, the multiple models were fused to train at various scales using deep learning. To repair patch junction fractures, several postprocessing methods were devised. The proposed BDMCI framework was also used to expand the catalog of Martian impact craters between 65°S and 65°N. This study provides a reference for identifying terrain features and demonstrates the potential of deep learning algorithms in planetary science research.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...