GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Materials, MDPI AG, Vol. 16, No. 17 ( 2023-08-29), p. 5916-
    Abstract: An ultra-wideband electromagnetic (EM) absorber is proposed. The proposed absorber consists of two thin metasurfaces, four dielectric layers, a glass fiber reinforced polymer (GFRP), and a carbon fiber reinforced polymer (CFRP) which works as a conductive reflector. The thin metasurfaces are accomplished with 1-bit pixelated patterns and optimized by a genetic algorithm. Composite materials of GFRP and CFRP are incorporated to improve the durability of the proposed absorber. From the full-wave simulation, more than 90% absorption rate bandwidth is computed from 2.2 to 18 GHz such that the fractional bandwidth is about 156% for the incidence angles from 0° to 30°. Absorptivity is measured using the Naval Research Laboratory (NRL) arch method in an EM anechoic environment. It was shown that the measured results correlated with the simulated results. In addition, the proposed absorber underwent high temperature and humidity tests under military environment test conditions in order to investigate its durability.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Materials Vol. 15, No. 21 ( 2022-10-26), p. 7520-
    In: Materials, MDPI AG, Vol. 15, No. 21 ( 2022-10-26), p. 7520-
    Abstract: Charge-based memories, such as NAND flash and dynamic random-access memory (DRAM), have reached scaling limits and various next-generation memories are being studied to overcome their issues. Resistive random-access memory (RRAM) has advantages in structural scalability and long retention characteristics, and thus has been studied as a next-generation memory application and neuromorphic system area. In this paper, AlSiOx, which was used as an alloyed insulator, was used to secure stable switching. We demonstrate synaptic characteristics, as well as the basic resistive switching characteristics with multi-level cells (MLC) by applying the DC sweep and pulses. Conduction mechanism analysis for resistive switching characteristics was conducted to understand the resistive switching properties of the device. MLC, retention, and endurance are evaluated and potentiation/depression curves are mimicked for a neuromorphic device.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Polymers, MDPI AG, Vol. 15, No. 15 ( 2023-08-04), p. 3301-
    Abstract: Attempts have been made to introduce microstructures or wrinkles into the elastomer surface to increase the sensitivity of the elastomer. However, the disadvantage of this method is that when a force is applied to the pressure sensor, the contact area with the electrode is changed and the linear response characteristic of the pressure sensor is reduced. The biggest advantage of the capacitive pressure sensor using an elastomer is that it is a characteristic that changes linearly according to the change in pressure, so it is not suitable to introduce microstructures or wrinkles into the elastomer surface. A method of increasing the sensitivity of the capacitive pressure sensor while maintaining the linearity according to the pressure change is proposed. We proposed a bubble-popping PDMS by creating pores inside the elastomer. The sensitivity of the pressure sensor made of the bubble-popping PDMS was approximately 4.6 times better than that of the pressure sensor without pores, and the pressure sensor made of the bubble-popping PDMS showed a high linear response characteristic to the external pressure change. These results show that our pressure sensor can be used to detect applied pressures or contact forces of e-skins.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...