GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (7)
  • 1
    In: Plants, MDPI AG, Vol. 9, No. 7 ( 2020-07-14), p. 890-
    Abstract: A cold-related protein, cold shock protein 3 (BcCSP3), was isolated from non-heading Chinese cabbage in this study. BcCSP3 can encode 205 amino acids (aa) with an open reading frame (ORF) of 618 base pairs (bp). Multiple sequence alignment and phylogenetic tree analyses showed that BcCSP3 contains an N-terminal cold shock domain and is highly similar to AtCSP2, their kinship is recent. Real-time quantitative polymerase chain reaction (RT-qPCR) showed that the expression level of BcCSP3 in stems and leaves is higher than that in roots. Compared with other stress treatments, the change in BcCSP3 expression level was most pronounced under cold stress. In addition, a BcCSP3–GFP fusion protein was localized to the nucleus and cytoplasm. These results indicated that BcCSP3 may play an important role in response to cold stress in non-heading Chinese cabbage. This work may provide a reference for the identification and expression analysis of other CSP genes in non-heading Chinese cabbage.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2018
    In:  International Journal of Molecular Sciences Vol. 20, No. 1 ( 2018-12-26), p. 93-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 20, No. 1 ( 2018-12-26), p. 93-
    Abstract: In plants, heptahelical proteins (HHPs) have been shown to respond to a variety of abiotic stresses, including cold stress. Up to the present, the regulation mechanism of HHP5 under low temperature stress remains unclear. In this study, BcHHP5 was isolated from Pak-choi (Brassica rapa ssp. chinensis cv. Suzhouqing). Sequence analysis and phylogenetic analysis indicated that BcHHP5 in Pak-choi is similar to AtHHP5 in Arabidopsis thaliana. Structure analysis showed that the structure of the BcHHP5 protein is relatively stable and highly conservative. Subcellular localization indicated that BcHHP5 was localized on the cell membrane and nuclear membrane. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that BcHHP5 was induced to express by cold and other abiotic stresses. In Pak-choi, BcHHP5-silenced assay, inhibiting the action of endogenous BcHHP5, indicated that BcHHP5-silenced might have a negative effect on cold tolerance, which was further confirmed. All of these results indicate that BcHHP5 might play a role in abiotic response. This work can serve as a reference for the functional analysis of other cold-related proteins from Pak-choi in the future.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Antioxidants, MDPI AG, Vol. 11, No. 2 ( 2022-02-15), p. 389-
    Abstract: Copper is a mineral element, which is necessary for the normal growth and development of plants, but high levels of copper will seriously damage plants. Studies have shown that AtGR1 improves the tolerance of Arabidopsis to aluminum and cadmium stress. However, the role of GR in the copper stress response of plants is still unclear. Here, we identified four genes (named BcGR1.1, BcGR1.2, BcGR2.1 and BcGR2.2, respectively) encoding glutathione reductase (GR) in non-heading Chinese cabbage (Brassica campestris (syn. Brassica rapa) ssp. chinensis), which could be divided into two types based on the subcellular localization. Among them, BcGR1.1, which belonged to the cytoplasmic localization type, was significantly upregulated under copper stress. Compared to WT (the wild type), Arabidopsis thaliana heterologously overexpressed BcGR1.1 had longer roots, higher fresh weight, higher GSH levels and GSH/GSSG (oxidized form of GSH) ratio, and accumulated more superoxide dismutase and peroxidase under copper stress. However, in the AsA-GSH cycle under copper stress, the contents of AsA and AsA/DHA were significantly downregulated, and the contents of DHA and T-AsA (total AsA) were upregulated, in the BcGR1.1-overexpressing Arabidopsis. Therefore, BcGR1.1 could improve the scavenging ability of reactive oxygen species (ROS) by increasing the activity of GR, antioxidant enzymes and the utilization of AsA, and then enhance the copper stress tolerance of plants.
    Type of Medium: Online Resource
    ISSN: 2076-3921
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704216-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Plants Vol. 10, No. 3 ( 2021-03-09), p. 510-
    In: Plants, MDPI AG, Vol. 10, No. 3 ( 2021-03-09), p. 510-
    Abstract: Branching is speculated to contribute to the plant architecture and crop yield. As a quantitative trait, branching is regulated by multiple genes in non-heading Chinese cabbage (NHCC). Several related candidate genes have been discovered in previous studies on the branching of NHCC, but their specific functions and regulatory mechanisms still need to be verified and explored. In this study, we found that the expression of BcHTT4, the ortholog to HEAT-INDUCED TAS1 TARGET4 (HTT4) in Arabidopsis, was significantly different between ‘Suzhouqing’ (common type) and ‘Maertou’ (multiple shoot branching type) in NHCC, which was consistent with the previous transcriptome sequencing results. The silencing of BcHTT4 expression in non-heading Chinese cabbage promotes axillary bud growth at the vegetative stage. When BcHTT4 is overexpressed in Arabidopsis, branching will decrease. In further study, we found that BcHTT4 interacts with immunophilin BcFKBP13 in vivo and in vitro through yeast two-hybrid analysis and bimolecular fluorescence complementation (BiFC) assays. Moreover, quantitative real-time PCR analysis showed that when the expression of BcHTT4 was silenced in ‘Suzhouqing’, the expression of BcFKBP13 also decreased significantly. Our findings reveal that BcHTT4 is involved in the branching mechanism and interacts with immunophilin BcFKBP13 in NHCC.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Environmental Research and Public Health Vol. 19, No. 6 ( 2022-03-18), p. 3631-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 6 ( 2022-03-18), p. 3631-
    Abstract: A sudden major public health event is likely to have a negative impact on public transport travel for residents, with public travel modes such as the metro and conventional buses experiencing varying degrees of decline in patronage. As a complement to public transport, taxi travel will suffer the same impact. Land use and population density among various functional blocks in a city are different, and therefore their changing rates in taxi travel demand are varied. This paper reveals the taxi travel demand correlations between urban blocks and then constructs a taxi travel demand decay model based on the Dynamic Input-Output Inoperability Model (DIIM) to simulate the decay degree of taxi travel demand in each block. When a major public health event occurs, the residential panic levels in different functional blocks may vary. It results in variable changing speeds of residential travel demand in each block. Based on this assumption, we use the intensity of travel demand as a correlation strength factor between blocks, and equate it with the technical coefficient in the DIIM model. We also define other variables to serve in model construction. These variables include the decay degree of travel demand intensity, residential travel willingness, coefficient of travel demand decay, derivative coefficient of travel demand interdependency, and demand perturbation coefficient. Lastly, we select a central area of Ningbo as the study area, and use taxi travel data in Ningbo during the COVID-19 pandemic of 2020 as input, simulate taxi travel demand dynamics, and analyze the accuracy and sensitivity of the model parameters. The relative errors between the five types of blocks and the actual decay of travel demand intensity are 8.3%, 3.8%, 8.7%, 5.5%, and 5.3%, respectively, which can basically match the actual situation, proving the validity of the model. The results of the study reveal the pattern of taxi travel demand decay among various blocks after major public health events. It provides methodological reference for decision makers to understand the development trend of multi-block taxi travel demand, so as to help form effective emergency plans for different blocks.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Remote Sensing Vol. 11, No. 17 ( 2019-08-21), p. 1967-
    In: Remote Sensing, MDPI AG, Vol. 11, No. 17 ( 2019-08-21), p. 1967-
    Abstract: Thermal infrared (TIR) target tracking is a challenging task as it entails learning an effective model to identify the target in the situation of poor target visibility and clutter background. The sparse representation, as a typical appearance modeling approach, has been successfully exploited in the TIR target tracking. However, the discriminative information of the target and its surrounding background is usually neglected in the sparse coding process. To address this issue, we propose a mask sparse representation (MaskSR) model, which combines sparse coding together with high-level semantic features for TIR target tracking. We first obtain the pixel-wise labeling results of the target and its surrounding background in the last frame, and then use such results to train target-specific deep networks using a supervised manner. According to the output features of the deep networks, the high-level pixel-wise discriminative map of the target area is obtained. We introduce the binarized discriminative map as a mask template to the sparse representation and develop a novel algorithm to collaboratively represent the reliable target part and unreliable target part partitioned with the mask template, which explicitly indicates different discriminant capabilities by label 1 and 0. The proposed MaskSR model controls the superiority of the reliable target part in the reconstruction process via a weighted scheme. We solve this multi-parameter constrained problem by a customized alternating direction method of multipliers (ADMM) method. This model is applied to achieve TIR target tracking in the particle filter framework. To improve the sampling effectiveness and decrease the computation cost at the same time, a discriminative particle selection strategy based on kernelized correlation filter is proposed to replace the previous random sampling for searching useful candidates. Our proposed tracking method was tested on the VOT-TIR2016 benchmark. The experiment results show that the proposed method has a significant superiority compared with various state-of-the-art methods in TIR target tracking.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Forests, MDPI AG, Vol. 14, No. 3 ( 2023-03-10), p. 549-
    Abstract: Tree species classification is an important and challenging task in image recognition and the management of forest resources. Moreover, the task of tree species classification based on remote sensing images can significantly improve the efficiency of the tree species survey and save costs. In recent years, many large models have achieved high accuracy in the task of tree species classification in an airborne remote-sensing manner, but due to their fixed geometric structure, traditional convolutional neural networks are inherently limited to the local receptive field and can only provide segmental context information. The limitation of insufficient context information greatly affects the segmentation accuracy. In this paper, a dual-attention residual network (AMDNet) and a re-parameterized model approach are proposed to capture the global context information, fuse the weight, reduce the model volume, and maintain the computational efficiency. Firstly, we propose MobileNetV2 as the backbone network for feature extraction to further improve the feature identification by modeling semantic dependencies in the spatial dimension and channel dimension and adding the output of the two attention modules. Then, the attention perception features are generated by stacking the attention modules, and the in-depth residual attention network is trained using attention residual learning, through which more accurate segmentation results can be obtained. Secondly, we adopt the approach of structure re-parameterization, use a multi-branch topology for training, carry out weighted averaging on multiple trained models, and fuse multiple branch modules into a completely equivalent module in inference. The proposed approach results in a reduction in the number of parameters and an accelerated inference speed while also achieving improved classification accuracy. In addition, the model training strategy is optimized based on Transformer to enhance the accuracy of segmentation. The model was used to conduct classification experiments on aerial orthophotos of Hongya Forest Farm in Sichuan, China, and the MIOU of tree species recognition using the test equipment reached 93.8%. Compared with current models such as UNet, our model exhibits a better performance in terms of both speed and accuracy, in addition to its enhanced deployment capacity, and its speed advantage is more conducive to real-time segmentation, thereby representing a novel approach for the classification of tree species in remote sensing imagery with significant potential for practical applications.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...