GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (12)
  • 1
    In: Water, MDPI AG, Vol. 15, No. 13 ( 2023-06-28), p. 2388-
    Abstract: Microalgae cultivation using wastewater is a combined process for pollutant removal and lipid production that has been widely studied in recent years. In this study, the effects of anaerobic membrane effluent (AME) and municipal wastewater (MW) ratios on microalgae growth and pollutant removal processes were investigated, and the lipid production properties were also explored. Results show that microalgae can grow in all AME/WW ratios, and a 40% AME content is the optimal condition for microalgal biomass accumulation (52.9 mg/L·d) and lipid production (0.378 g/L). Higher AME addition would inhibit microalgae growth. In addition, high ammonia (approximately 97%) and phosphate (around 90%) removal efficiencies can be achieved in all AME/WW ratio conditions, while the total nitrogen removal efficiencies decreased with the addition of AME. Total nitrogen and phosphate are the limiting factors in treating water to meet the requirements of the integrated wastewater discharge standard. This study provided a new method for anaerobic digestion and municipal wastewater treatment and also realized green energy production based on the sustainable development principles.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Catalysts, MDPI AG, Vol. 13, No. 6 ( 2023-06-18), p. 1018-
    Abstract: Binary metallic alloy nanomaterials (NMs) have received significant attention because of their widespread application in photoelectrocatalysis, electronics, and engineering. Although various synthetic methods have been adopted to prepare binary alloy NMs, the formation of bimetallic alloy NMs by irradiating the mixed solutions of metal salts and metal powders, using a nanosecond pulsed laser in the absence of any reducing agent, is rarely reported. Herein, we report a simple method to fabricate PtX (X = Ag, Cu, Co, Ni) alloy NMs by laser irradiation. Taking PtAg alloys as an example, we present the growth dynamics of the PtAg alloys by laser irradiating a mixture solution of bulk Pt and AgNO3. The experimental process and evidenced characterization indicate that the photothermal evaporation induced by laser irradiation can cause the fragmentation of the bulk Pt into smaller parts, which alloy with Ag atoms extracted from Ag+ by solvated electrons (e−aq) and free radicals (Haq). These alloys were used as electrocatalysts for the hydrogen evolution reaction (HER), proving their potential application. Notably, in a 0.5 M H2SO4 solution, the PtNi alloy exhibited higher HER activity (44 mV at 10 mA/cm−2) compared to the untreated bulk Pt (72 mV). Our work provides unique insights into the growth processing of valuable Pt-based bimetallic alloy NMs by laser-assisted metallic alloying, which paves a path for the development of bimetallic alloy electrocatalysts.
    Type of Medium: Online Resource
    ISSN: 2073-4344
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662126-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing, MDPI AG, Vol. 13, No. 1 ( 2021-01-05), p. 157-
    Abstract: Thin clouds seriously affect the availability of optical remote sensing images, especially in visible bands. Short-wave infrared (SWIR) bands are less influenced by thin clouds, but usually have lower spatial resolution than visible (Vis) bands in high spatial resolution remote sensing images (e.g., in Sentinel-2A/B, CBERS04, ZY-1 02D and HJ-1B satellites). Most cloud removal methods do not take advantage of the spectral information available in SWIR bands, which are less affected by clouds, to restore the background information tainted by thin clouds in Vis bands. In this paper, we propose CR-MSS, a novel deep learning-based thin cloud removal method that takes the SWIR and vegetation red edge (VRE) bands as inputs in addition to visible/near infrared (Vis/NIR) bands, in order to improve cloud removal in Sentinel-2 visible bands. Contrary to some traditional and deep learning-based cloud removal methods, which use manually designed rescaling algorithm to handle bands at different resolutions, CR-MSS uses convolutional layers to automatically process bands at different resolution. CR-MSS has two input/output branches that are designed to process Vis/NIR and VRE/SWIR, respectively. Firstly, Vis/NIR cloudy bands are down-sampled by a convolutional layer to low spatial resolution features, which are then concatenated with the corresponding features extracted from VRE/SWIR bands. Secondly, the concatenated features are put into a fusion tunnel to down-sample and fuse the spectral information from Vis/NIR and VRE/SWIR bands. Third, a decomposition tunnel is designed to up-sample and decompose the fused features. Finally, a transpose convolutional layer is used to up-sample the feature maps to the resolution of input Vis/NIR bands. CR-MSS was trained on 28 real Sentinel-2A image pairs over the globe, and tested separately on eight real cloud image pairs and eight simulated cloud image pairs. The average SSIM values (Structural Similarity Index Measurement) for CR-MSS results on Vis/NIR bands over all testing images were 0.69, 0.71, 0.77, and 0.81, respectively, which was on average 1.74% higher than the best baseline method. The visual results on real Sentinel-2 images demonstrate that CR-MSS can produce more realistic cloud and cloud shadow removal results than baseline methods.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Agronomy, MDPI AG, Vol. 13, No. 2 ( 2023-01-31), p. 430-
    Abstract: Heat shock protein 90 (HSP90) plays critical roles in plant growth and development, as well as in response to abiotic stresses such as heat and cold. To comprehensively analyze the HSP90 gene family and determine the key HSP90 gene responsive to temperature stress in pumpkin (Cucurbita moschata Duch.), bioinformatics and molecular biology techniques were used in this study. A total of 10 CmoHSP90 genes were identified from the pumpkin genome, encoding amino acids of 567–865, with protein molecular weight of 64.32–97.36 kDa. Based on the phylogenetic analysis, they were classified into four groups. The members in each group contained similar conserved motifs and gene structures. The 10 CmoHSP90 genes were distributed on the 9 chromosomes of C. moschata. Four pairs of segmental duplication genes (CmoHSP90-1/CmoHSP90-10, CmoHSP90-2/CmoHSP90-7, CmoHSP90-3/CmoHSP90-6, and CmoHSP90-4/CmoHSP90-9) were detected. Synteny analysis revealed that 10 C. maxima HSP90 genes and 10 C. moschata HSP90 genes were orthologous genes with 17 syntenic relationships. Promoter analysis detected 23 cis-acting elements including development-, light-, stress-, and hormone-related elements in the promoter regions of pumpkin HSP90 genes. Further analysis showed that the transcript levels of CmoHSP90-3 and CmoHSP90-6 were remarkably up-regulated by heat stress, while CmoHSP90-6 and CmoHSP90-10 were significantly up-regulated by cold stress, suggesting that these HSP90 genes play critical roles in response to temperature stress in pumpkins. The findings will be valuable for understanding the roles of CmoHSP90s in temperature stress response and should provide a foundation for elucidating the function of CmoHSP90s in C. moschata.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2017
    In:  Sensors Vol. 17, No. 11 ( 2017-11-16), p. 2635-
    In: Sensors, MDPI AG, Vol. 17, No. 11 ( 2017-11-16), p. 2635-
    Abstract: This paper reports on a sensor for monitoring bone plate strain in real time. The detected bone plate strain could be used for judging the healing state of fractures in patients. The sensor consists of a magnetoelastic material, which can be wirelessly connected and passively embedded. In order to verify the effectiveness of the sensor, a tibia-bone plate-screw (TBS) model was established using the finite element analysis method. A variation of the bone plate strain was obtained via this model. A goat hindquarter tibia was selected as the bone fracture model in the experiment. The tibia was fixed on a high precision load platform and an external force was applied. Bone plate strain variation during the bone fracture healing process was acquired with sensing coils. Simulation results indicated that bone plate strain decreases as the bone gradually heals, which is consistent with the finite element analysis results. This validated the soundness of the sensor reported here. This sensor has wireless connections, no in vivo battery requirement, and long-term embedding. These results can be used not only for clinical practices of bone fracture healing, but also for bone fracture treatment and rehabilitation equipment design.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Water, MDPI AG, Vol. 14, No. 15 ( 2022-08-06), p. 2438-
    Abstract: Due to its high content of organics and nutrients, swine wastewater has become one of the main environment pollution sources. Exploring high-efficient technologies for swine wastewater treatment is urgent and becoming a hot topic in the recent years. The present study introduces anaerobic membrane bioreactor (AnMBR) for efficient treatment of swine wastewater, compared with up-flow anaerobic sludge blanket (UASB) as a traditional system. Pollutant removal performance, methanogenic properties, and microbial community structures were investigated in both reactors. Results showed that by intercepting particulate organics, AnMBR achieved stable and much higher chemical oxygen demand (COD) removal rate (approximately 90%) than UASB (around 60%). Due to higher methanogenic activity of anaerobic sludge, methane yield of AnMBR (0.23 L/g-COD) was higher than that of UASB. Microbial community structure analysis showed enrichment of functional bacteria that can remove refractory organic matter in the AnMBR, which promoted the organics conversion processes. In addition, obvious accumulation of acetotrophic and hydrotrophic methanogens in AnMBR system was recorded, which could broaden the organic matter degradation pathways and the methanogenesis processes, ensuring a higher methane yield. Through energy balance analysis, results concluded that the net energy recovery efficiency of AnMBR was higher than that of UASB system, indicating that applying AnMBR for livestock wastewater treatment could not only efficiently remove pollutants, but also significantly enhance the energy recovery.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Sustainability, MDPI AG, Vol. 15, No. 2 ( 2023-01-06), p. 1055-
    Abstract: Developing low-carbon advanced processes for sustainable wastewater treatment is of great importance to increase bioenergy recovery and to reduce the greenhouse gas effect. In this study, the influence of adding 25 g/L of granular activated carbon (GAC) on the process performance was studied with a lab-scale GAC amended anaerobic dynamic membrane (G-AnDMBR) used to treat real domestic wastewater, which was compared to a control bioreactor without the GAC addition (C-AnDMBR). Due to the initial adsorption effect of GAC and the high microbial activity of the attached biomass of GAC, the G-AnDMBR achieved a better removal of the total chemical oxygen demand (TCOD) and turbidity compared to the C-AnDMBR, with the average removal rate increasing from 82.1% to 86.7% and from 88.7% to 93.2%. The gaseous methane production increased from 0.08 ± 0.05 to 0.14 ± 0.04 L/d, and the total methane production rate was enhanced from 0.21 ± 0.11 to 0.23 ± 0.09 LCH4/gCOD. Thus, the treatment performance of the G-AnDMBR was superior to that of the C-AnDMBR, and the addition of GAC could improve the effluent quality during the initial dynamic membrane formation process. In addition, the buffering effect of GAC made the G-AnDMBR maintain a relatively stable solution environment. The G-AnDMBR showed a transmembrane pressure (TMP) increasing rate of 0.045 kPa/d, which was obviously lower than that of the C-AnDMBR (0.057 kPa/d) because the nonfluidized GAC could trap fine sludge particles and adsorb soluble extracellular polymer substances (SEPSs), thus inhibiting the over formation of the dynamic membrane layer. A microbial property analysis indicated that GAC induced a change in the microbial community and enhanced the gene abundance of type IV pili and that it also potentially accelerated the direct interspecific electron transfer (DIET) among syntrophic bacteria and methanogens by enriching specific functional microorganisms. The results indicated that the integration of GAC and the AnDMBR process can be a cost-effective and promising alternative for domestic wastewater treatment and bioenergy recovery.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Diagnostics, MDPI AG, Vol. 11, No. 9 ( 2021-09-03), p. 1614-
    Abstract: Hospital acquired thrombocytopenia (HAT) is a common hematological complication after surgery. This research aimed to develop and compare the performance of seven machine learning (ML) algorithms for predicting patients that are at risk of HAT after surgery. We conducted a retrospective cohort study which enrolled adult patients transferred to the intensive care unit (ICU) after surgery in West China Hospital of Sichuan University from January 2016 to December 2018. All subjects were randomly divided into a derivation set (70%) and test set (30%). ten-fold cross-validation was used to estimate the hyperparameters of ML algorithms during the training process in the derivation set. After ML models were developed, the sensitivity, specificity, area under the curve (AUC), and net benefit (decision analysis curve, DCA) were calculated to evaluate the performances of ML models in the test set. A total of 10,369 patients were included and in 1354 (13.1%) HAT occurred. The AUC of all seven ML models exceeded 0.7, the two highest were Gradient Boosting (GB) (0.834, 0.814–0.853, p 〈 0.001) and Random Forest (RF) (0.828, 0.807–0.848, p 〈 0.001). There was no difference between GB and RF (0.834 vs. 0.828, p = 0.293); however, these two were better than the remaining five models (p 〈 0.001). The DCA revealed that all ML models had high net benefits with a threshold probability approximately less than 0.6. In conclusion, we found that ML models constructed by multiple preoperative variables can predict HAT in patients transferred to ICU after surgery, which can improve risk stratification and guide management in clinical practice.
    Type of Medium: Online Resource
    ISSN: 2075-4418
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662336-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Sensors, MDPI AG, Vol. 22, No. 17 ( 2022-08-28), p. 6479-
    Abstract: A high-frequency surface acoustic wave (SAW) resonator, based on sandwiched interdigital transducer (IDT), is presented. The resonator has the structure of diamond/AlN/IDT/AlN/diamond, with Si as the substrate. The results show that its phase velocity and electromechanical coupling coefficient are both significantly improved, compared with that of the traditional interdigital transduce-free surface structure. The M2 mode of the sandwiched structure can excite an operation frequency up to 6.15 GHz, with an electromechanical coupling coefficient of 5.53%, phase velocity of 12,470 m/s, and temperature coefficient of frequency of −6.3 ppm/°C. This structure provides a new ideal for the design of high-performance and high-frequency SAW devices.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Energies, MDPI AG, Vol. 12, No. 13 ( 2019-07-05), p. 2594-
    Abstract: Recent research has investigated the energy saving potential of regenerative suspension. However, the greenhouse gas (GHG) emission mitigation potential of regenerative suspension in battery electric vehicles (BEVs) has not been considered. Life cycle assessment (LCA) is a typical method for evaluating GHG emissions but is rarely used in vehicle control design. Here we explore the effects of regenerative suspension on reducing the GHG emissions from a BEV, whose control design considers well-to-wheels (WTW) analysis. The work first conducts the WTW analysis and modelling of the GHG emissions from a BEV equipped with regenerative suspension. Based on the models, the relation between suspension control parameters and GHG emissions is obtained. To reach a compromise between dynamic performance and environmental benefit, two types of control parameters are recommended and their switch rules during the operation are proposed. Finally, we take a case study with different driving cycles, road levels and country contexts. The results show that considering WTW analysis in control design can contribute to GHG emission mitigation, especially for countries that have a high-carbon intensity of the electricity grid. These findings provide a quantitative reference for technology path decision on regenerative suspension. This paper may provide a new insight for employing LCA in vehicle design.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...