GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Metals Vol. 13, No. 9 ( 2023-09-17), p. 1607-
    In: Metals, MDPI AG, Vol. 13, No. 9 ( 2023-09-17), p. 1607-
    Abstract: The mechanical properties of a coarse-grained heat-affected zone (CGHAZ) are affected by welding thermal cycling with varied heat input (Ej), but its effect on tensile properties is rarely studied. In the present work, Ej = 15, 35, 55, 75 kJ/cm CGHAZ samples were prepared via GleebleTM (St. Paul, MN, USA) for a novel V-Ti-N microalloyed weathering steel. The tensile properties of CGHAZ with varied Ej were evaluated. The results indicated that mixed microstructures dominated by lath bainitic ferrite (LBF) and granular bainitic ferrite (GBF) were obtained at Ej = 15 and 35 kJ/cm, respectively, while a mixed microstructure composed of GBF, intragranular acicular ferrite (IGAF), and polygon ferrite (PF) formed at Ej = 55 and 75 kJ/cm, apart from martensite/austenite (M/A) constituents in each Ej condition. The above variation tendency in the microstructure with the increase in Ej led to coarsening of low-angle grain boundaries (LAGBs) and a decrease in dislocation density, which in turn resulted in a yield strength (YS) decrease from 480 MPa to 416 MPa. The mean equivalent diameter (MED), defined by the misorientation tolerance angles (MTAs) ranging from 2–6°, had the strongest contribution to YS due to their higher fitting coefficient of the Hall–Petch relationship. In addition, the increase in the average size (dM/A) of M/A constituents from 0.98 μm to 1.81 μm and in their area fraction (fM/A) from 3.11% to 4.42% enhanced the strain-hardening stress. The yield strength ratio (YR) reduced as the Ej increased, and the lower density and more uniform dislocations inside the ferrite led to a uniform elongation (uE) increase from 9.5% to 18.6%.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662252-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Agronomy, MDPI AG, Vol. 13, No. 9 ( 2023-09-12), p. 2367-
    Abstract: The Hetao Irrigation District is a typical salinized irrigation district in China, and soil salinization restricts agricultural development. To explore the spatial and temporal variability of soil water and salt and the coupling relationship in the Hetao Irrigation District, a field experiment was carried out at the scale of the Yichang Irrigation District branch canal in the downstream of the Hetao Irrigation District. Fifty-three soil sampling points were established to analyze the spatial and temporal variability of soil water content and total salt content and the coupling relationship using geostatistics and the coupling degree model. The results showed that soil water content in the study area belonged to medium variability and weak variability, and soil total salt content belonged to strong variability and medium variability. The theoretical models of soil water content and total salt content semi-variance function in the study area following the Gaussian model, with the block-base ratio less than 25%, with strong spatial autocorrelation, and the spatial correlation gradually increased with the increase of soil depth. The total salt content of the soil in the study area was interpolated with higher accuracy using radial basis functions as compared to ordinary kriging interpolation. In terms of temporal changes in salinity, the average salt accumulation rate of the 0–100 cm soil layer in the study area was 20.17% when salinity increased from May to June; the average desalination rate was 16.37% when salinity decreased from June to August. The main factors affecting soil salinity in cultivated land during the growing period were irrigation, precipitation, and planting crops, and the main factors affecting soil salinity in wasteland were precipitation and topography. The average coupling degree of soil water and salt in wasteland in the study area was lower than that of cultivated land, ranging from 65.15% to 86.59% of that of cultivated land. The level of coordination is marginal coordination for cultivated land and marginal disorder for wasteland. The study provides a theoretical basis for the prevention and control of soil salinization in arid areas.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Foods, MDPI AG, Vol. 10, No. 12 ( 2021-12-10), p. 3079-
    Abstract: To investigate the role of sulfhydryl groups and disulfide bonds in different protein-stabilized emulsions, N-ethylmaleimide (NEM) was used as a sulfhydryl-blocking agent added in the emulsion. The addition of NEM to block the sulfhydryl groups resulted in a reduction in disulfide bond formation, which enabled the internal structure of the protein molecule to be destroyed, and then decreased the restriction of protein membrane on the oil droplets. Furthermore, with the NEM content increasing in the emulsion, a reduction in the protein emulsifying activity and emulsion stability also occurred. At the same time, the intermolecular interaction of the protein on the oil droplet interface membrane was destroyed, and the emulsion droplet size increased with the NEM content in the emulsion. Although NEM blocking sulfhydryl groups from forming disulfide bonds has similar effects on three types of protein emulsion, the degree of myofibrillar protein (MP), egg-white protein isolate (EPI), and soybean protein isolate (SPI) used as emulsifiers had a subtle difference.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Buildings Vol. 11, No. 9 ( 2021-09-14), p. 409-
    In: Buildings, MDPI AG, Vol. 11, No. 9 ( 2021-09-14), p. 409-
    Abstract: The unsafe behavior of construction workers is one of the main causes of safety accidents at construction sites. To reduce the incidence of construction accidents and improve the safety performance of construction projects, there is a need to identify risky factors by monitoring the behavior of construction workers. Computer vision (CV) technology, which is a powerful and automated tool used for extracting images and video information from construction sites, has been recognized and adopted as an effective construction site monitoring technology for the identification of risky factors resulting from the unsafe behavior of construction workers. In this article, we introduce the research background of this field and conduct a systematic statistical analysis of the relevant literature in this field through the bibliometric analysis method. Thereafter, we adopt a content-based analysis method to depict the historical explorations in the field. On this basis, the limitations and challenges in this field are identified, and future research directions are proposed. It is found that CV technology can effectively monitor the unsafe behaviors of construction workers. The research findings can enhance people’s understanding of construction safety management.
    Type of Medium: Online Resource
    ISSN: 2075-5309
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2661539-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Metals, MDPI AG, Vol. 13, No. 9 ( 2023-08-22), p. 1506-
    Abstract: In this paper, the influence of the silicon (Si) content on microstructure and impact property of submerged arc weld metals (WMs) for weathering bridge steel was clarified. Actual submerged arc welding (SAW) was carried out to produce WMs with 0.18 wt.%, 0.36 wt.%, 0.51 wt.%, and 0.60 wt.% of Si. The low temperature impact property of weld metal was detected, and the weld microstructures were characterized by optical microscopy (OM), scanning and transmission electron microscope (SEM and TEM), and electron backscatter diffraction (EBSD). The results indicate that WMs consist of polygon ferrite (PF), acicular ferrite (AF), granular bainitic ferrite (GBF), and martensite/austenite (M/A) constituents in each Si content. With increasing Si, the proportion of PF increased, while AF and GBF coarsened, the area fraction, fM/A, and the mean size, dM/A, of M/A constituents increased, the number of inclusions decreased, but the size increased. Further, the fraction of high-angle grain boundaries (HAGBs) with the misorientation tolerance angles (MTAs) greater than 15° reduced, while the mean equivalent diameter, MEDMTA≥15°, of ferrite grains with HAGBs increased. Accordingly, the impact toughness of WM was degraded from 108.1 J to 39.4 J with the increase in Si. The increase in M/A constituents and inclusions size reduced the critical fracture stress, thereby formation of larger microcracks and cleavage planes occurred. The reduced HAGBs exhibited a low hindering effect on crack propagation, and, consequently, the impact toughness decreased with increasing Si content.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662252-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Journal of Marine Science and Engineering Vol. 10, No. 2 ( 2022-02-10), p. 241-
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 10, No. 2 ( 2022-02-10), p. 241-
    Abstract: Underwater video images, as the primary carriers of underwater information, play a vital role in human exploration and development of the ocean. Due to the optical characteristics of water bodies, underwater video images generally have problems such as color bias and unclear image quality, and image quality degradation is severe. Degenerated images have adverse effects on the visual tasks of underwater vehicles, such as recognition and detection. Therefore, it is vital to obtain high-quality underwater video images. Firstly, this paper analyzes the imaging principle of underwater images and the reasons for their decline in quality and briefly classifies various existing methods. Secondly, it focuses on the current popular deep learning technology in underwater image enhancement, and the underwater video enhancement technologies are also mentioned. It also introduces some standard underwater data sets, common video image evaluation indexes and underwater image specific indexes. Finally, this paper discusses possible future developments in this area.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Water, MDPI AG, Vol. 15, No. 19 ( 2023-09-23), p. 3342-
    Abstract: Soil salinization is a major factor impacting global crop yields. To explore the spatial distribution and influencing factors of soil water and salt in typical canals of the Hetao irrigation district, regional soil information was monitored at fixed locations. In this study, classical statistics, geostatistics, and spatial autocorrelation methods were used to conduct quantitative analyses of soil salt content, water content, soil particle size distribution, and groundwater depth. The variation coefficient of the soil salt content in the 20–40 and 40–60 cm soil layers was between 10% and 100%, which corresponds to a medium degree of variation; the other soil layers had strong degrees of variation. The soil moisture content in each layer varied moderately. The gold coefficients of soil salt content and water content were less than 0.25, and the Z value was greater than 0, showing a strong spatial correlation and certain spatial agglomeration characteristics, which were mainly affected by structural factors in the study area. The distribution patterns of soil water and salt were affected by soil particle size. Sand content decreased with increasing depth, soil salt was negatively correlated with sand content, and soil water was positively correlated with sand content. Soil salinity was significantly affected by groundwater depth and increased with decreasing groundwater depth, following an exponential relationship. When the groundwater depth exceeded 1.7 m, the soil salt content exhibited small changes with groundwater depth. The results of this study could play a guiding role in terms of understanding the degree of soil salinization surrounding canals in the Hetao irrigation area and adjusting land management strategies over time.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 18, No. 23 ( 2021-11-26), p. 12471-
    Abstract: The contrasting trends of surface particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) and their relationships with meteorological parameters from 2015 to 2019 were investigated in the coastal city of Shanghai (SH) and the inland city of Hefei (HF), located in the Yangtze River Delta (YRD). In both cities, PM2.5 declined substantially, while O3 and NO2 showed peak values during 2017 when the most frequent extreme high-temperature events occurred. Wind speed was correlated most negatively with PM2.5 and NO2 concentrations, while surface temperature and relative humidity were most closely related to O3. All of the studied pollutants were reduced by rainfall scavenging, with the greatest reduction seen in PM2.5, followed by NO2 and O3. By contrast, air pollutants in the two cities were moderately strongly correlated, although PM2.5 concentrations were much lower and Ox (O3 + NO2) concentrations were higher in SH. Additionally, complex air pollution hours occurred more frequently in SH. Air pollutant concentrations changed more with wind direction in SH. A more effective washout effect was observed in HF, likely due to the more frequent strong convection and thunderstorms in inland areas. This research suggests pertinent air quality control measures should be designed accordingly for specific geographical locations.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Water, MDPI AG, Vol. 14, No. 23 ( 2022-12-04), p. 3950-
    Abstract: The impacts of human activity (denoted by population), economic, and social development (denoted by gross domestic product–GDP) on extremely wet/dry (or drought) events are important for humans to tackle extreme hazards. This research aims to investigate the variations in maximum values (SPEI_MAX) and minimum values (SPEI_MIN) of a 12 month standardized precipitation evapotranspiration index (SPEI12-month) for the selected 525 sites at different socioeconomic development levels (SDLs) (classified by population and GDP) in China between 2000–2018, and to analyze the impacts of increased population/GDP/SDLs on extremely wet/dry events. The linear correlations between SPEI12-month/SPEI_MAX/SPEI_MIN and population/GDP were conducted for all the sites. The relationship between linear slopes of population (PopuLS)/GDP(GDPLS) and SPEI_MAX (SPEI_MAXLS)/SPEI_MIN (SPEI_MINLS) were further studied. The results show that the extremely wet events denoted by SPEI_MAX become worse and the extreme drought events denoted by SPEI_MIN tend to be milder over time. The years 2016 and 2011 were extremely wet and extremely dry in China. There were general increasing trends in SPEI_MAX and decreasing trends in SPEI_MIN as the SDL increased from 1 to 6. This gradual, continuous increase/decrease potentially affected levels 5 and 6. Moreover, extremely wet events were more severe in developed big municipal cities of higher SDLs and extreme drought events were more severe for lower SDLs. This research can supply references for policy makers to prevent extreme disasters.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Remote Sensing Vol. 15, No. 17 ( 2023-09-03), p. 4341-
    In: Remote Sensing, MDPI AG, Vol. 15, No. 17 ( 2023-09-03), p. 4341-
    Abstract: On 1 December 2016, an Mw 6.2 earthquake characterized by normal faulting occurred in the highlands of the central Andes in southern Peru, marking the region’s largest shallow event. The occurrence of the earthquake provides a significant chance to gain insight into the regional tectonic deformation and the seismogenic mechanism of the shallow normal-faulting earthquake, as well as the regional potential seismic risk. Here, we first utilize Sentinel-1A interferometric synthetic aperture radar (InSAR) data to extract the coseismic and postseismic deformation associated with this earthquake and then determine the detailed coseismic slip and postseismic afterslip distribution of this event. Coseismic modeling results indicate that the coseismic rupture is mainly characterized by normal faulting with some dextral strike-slip components. Most coseismic slip is confined to a depth range of 2–12 km, indicating an obvious slip deficit area in the shallow fault part. Further postseismic modeling reveals that the majority of afterslip is concentrated at depths of 0 to 5.4 km. The relatively shallow postseismic afterslip makes up for the coseismic slip deficit area to some extent. Through a joint analysis of the inversions, seismic data, and regional geology and geomorphology, we infer that the occurrence of this 2016 normal-faulting event is a result of regional gravitational collapse. In addition, we investigate the relationship between the 2016 earthquake and great historical earthquakes near the subduction zone of the central Andes and find that the 2016 event is likely promoted in advance by these events through our calculations of the coseismic and postseismic Coulomb stress changes. Finally, we should pay more attention to the nearby Falla Huaytacucho-Condoroma fault and the western segment of the Vilcanota Fault because of their relatively high stress loading.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...