GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (3)
Material
Publisher
  • MDPI AG  (3)
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Multimodal Technologies and Interaction Vol. 4, No. 4 ( 2020-12-14), p. 92-
    In: Multimodal Technologies and Interaction, MDPI AG, Vol. 4, No. 4 ( 2020-12-14), p. 92-
    Abstract: The purpose of this perspective paper and technology overview is to encourage collaboration between designers and animal carers in zoological institutions, sanctuaries, research facilities, and in soft-release scenarios for the benefit of all stakeholders, including animals, carers, managers, researchers, and visitors. We discuss the evolution of animal-centered technology (ACT), including more recent animal-centered computing to increase animal wellbeing by providing increased opportunities for choice and control for animals to gain greater self-regulation and independence. We believe this will increase animal welfare and relative freedom, while potentially improving conservation outcomes. Concurrent with the benefits to the animals, this technology may benefit human carers by increasing workplace efficiency and improving research data collection using automated animal monitoring systems. These benefits are balanced against cultural resistance to change, the imposition of greater staff training, a potential reduction in valuable animal-carer interaction, and the financial costs for technology design, acquisition, obsolescence, and maintenance. Successful applications will be discussed to demonstrate how animal-centered technology has evolved and, in some cases, to suggest future opportunities. We suggest that creative uses of animal-centered technology, based upon solid animal welfare science, has the potential for greatly increasing managed animal welfare, eventually growing from individual animal enrichment features to facility-wide integrated animal movement systems and transitions to wildlife release and rewilding strategies.
    Type of Medium: Online Resource
    ISSN: 2414-4088
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2893637-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Animals Vol. 10, No. 10 ( 2020-10-10), p. 1843-
    In: Animals, MDPI AG, Vol. 10, No. 10 ( 2020-10-10), p. 1843-
    Abstract: Cats (Felis catus) are significant predators of mammals, birds, frogs and reptiles and are implicated in mammal species extinctions in Australia. Current controls fail to eradicate entire populations allowing survivors to re-establish. The use of the Mata Hari Judas (MHJ) technique, i.e., inducing prolonged oestrus using hormone implants, can enhance the eradication of remnant animals and would greatly improve conservation efforts. The hypotheses tested were that hormone implants could induce prolonged oestrus in queens (adult female cats), and that prolonging oestrus would result in sustained attractiveness to toms (adult male cats). Queens (n = 14) were randomly allocated to five treatments including a control and four treatments using hormone implants. Queens were observed daily; alone and during indirect contact with a tom for 30 consecutive days. There were significant increases (p 〈 0.001) in oestrus duration (19 to 27 days) for entire and ovariohysterectomised queens given Compudose100™ implants (1/8 or 1/4 implant). This study shows that it is possible to induce and prolong oestrus in queens using Compudose100™ implants where these queens are attractive to toms. The MHJ queen is a new tool with the potential to enhance the detection and thus the control of feral cats in remnant populations.
    Type of Medium: Online Resource
    ISSN: 2076-2615
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2606558-7
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Pathogens, MDPI AG, Vol. 9, No. 1 ( 2019-12-27), p. 27-
    Abstract: Ascomycete Sclerotinia sclerotiorum (Lib.) de Bary is one of the most damaging soilborne fungal pathogens affecting hundreds of plant hosts, including many economically important crops. Its genomic sequence has been available for less than a decade, and it was recently updated with higher completion and better gene annotation. Here, we review key molecular findings on the unique biology and pathogenesis process of S. sclerotiorum, focusing on genes that have been studied in depth using mutant analysis. Analyses of these genes have revealed critical players in the basic biological processes of this unique pathogen, including mycelial growth, appressorium establishment, sclerotial formation, apothecial and ascospore development, and virulence. Additionally, the synthesis has uncovered gaps in the current knowledge regarding this fungus. We hope that this review will serve to build a better current understanding of the biology of this under-studied notorious soilborne pathogenic fungus.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...