GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Membranes Vol. 12, No. 10 ( 2022-10-12), p. 989-
    In: Membranes, MDPI AG, Vol. 12, No. 10 ( 2022-10-12), p. 989-
    Abstract: Recently, alkaline membrane water electrolysis, in which membranes are in direct contact with water or alkaline solutions, has gained attention. This necessitates new approaches to membrane characterization. We show how the mechanical properties of FAA3, PiperION, Nafion 212 and reinforced FAA3-PK-75 and PiperION PI-15 change when stress–strain curves are measured in temperature-controlled water. Since membranes show dimensional changes when the temperature changes and, therefore, may experience stresses in the application, we investigated seven different membrane types to determine if they follow the expected spring-like behavior or show hysteresis. By using a very simple setup which can be implemented in most laboratories, we measured the “true hydroxide conductivity” of membranes in temperature-controlled water and found that PI-15 and mTPN had higher conductivity at 60 °C than Nafion 212. The same setup was used to monitor the alkaline stability of membranes, and it was found that stability decreased in the order mTPN 〉 PiperION 〉 FAA3. XPS analysis showed that FAA3 was degraded by the attack of hydroxide ions on the benzylic position. Water permeability was analyzed, and mTPN had approximately two times higher permeability than PiperION and 50% higher permeability than FAA3.
    Type of Medium: Online Resource
    ISSN: 2077-0375
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2614641-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Polymers, MDPI AG, Vol. 13, No. 5 ( 2021-02-25), p. 690-
    Abstract: Polystyrene-based polymers with variable molecular weights are prepared by radical polymerization of styrene. Polystyrene is grafted with bromo-alkyl chains of different lengths through Friedel–Crafts acylation and quaternized to afford a series of hydroxide-ion-conducting ionomers for the catalyst binder for the membrane electrode assembly in anion-exchange membrane fuel cells (AEMFCs). Structural analyses reveal that the molecular weight of the polystyrene backbone ranges from 10,000 to 63,000 g mol−1, while the ion exchange capacity of quaternary-ammonium-group-bearing ionomers ranges from 1.44 to 1.74 mmol g−1. The performance of AEMFCs constructed using the prepared electrode ionomers is affected by several ionomer properties, and a maximal power density of 407 mW cm−2 and a durability exceeding that of a reference cell with a commercially available ionomer are achieved under optimal conditions. Thus, the developed approach is concluded to be well suited for the fabrication of next-generation electrode ionomers for high-performance AEMFCs.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Polymers, MDPI AG, Vol. 13, No. 11 ( 2021-05-24), p. 1713-
    Abstract: The purpose of this study was to investigate the effect of the aliphatic moiety in the sulfonated poly(arylene ether sulfone) (SPAES) backbone. A new monomer (4,4’-dihydroxy-1,6-diphenoxyhexane) was synthesized and polymerized with other monomers to obtain partially alkylated SPAESs. According to differential scanning calorimetry analysis, the glass transition temperature (Tg) of these polymers ranged from 85 to 90 °C, which is 100 °C lower than that of the fully aromatic SPAES. Due to the low Tg values obtained for the partially alkylated SPAESs, it was possible to prepare a hydrocarbon electrolyte membrane-based membrane electrode assembly (MEA) with Nafion® binder in the electrode through the use of a decal transfer method, which is the most commercially suitable system to obtain an MEA of proton exchange membrane fuel cells (PEMFCs). A single cell prepared using this partially alkylated SPAES as an electrolyte membrane exhibited a peak power density of 539 mW cm−2.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...