GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (5)
  • 1
    In: Agronomy, MDPI AG, Vol. 10, No. 12 ( 2020-12-14), p. 1965-
    Abstract: A field experiment was conducted to evaluate the influence of the continuous application of organic and mineral N fertilizer on N2O and NO emissions under maize and wheat rotation on the North China Plain. This study included eight treatments: no fertilizer (control); mineral N fertilizer (Nmin) at a rate of 200 kg N ha−1 per season; 50% mineral fertilizer N plus 50% cattle manure N (50% CM), 50% chicken manure N (50% FC) or 50% pig manure N (50% FP); 75% mineral fertilizer N plus 25% cattle manure N (25% CM), 25% chicken manure N (25% FC) or 25% pig manure N (25% FP). The annual N2O and NO emissions were 2.71 and 0.39 kg N ha−1, respectively, under the Nmin treatment, with an emission factor of 0.50% for N2O and 0.07% for NO. Compared with the Nmin treatment, N2O emissions did not differ when 50% of the mineral N was replaced with manure N (50% CM, 50% FC and 50% FP), while annual NO emissions were significantly reduced by 49.0% and 27.8% under 50% FC and 50% FP, respectively. In contrast, annual N2O emissions decreased by 21–38% compared to the Nmin treatment when 25% of the mineral N was replaced with manure N (25% CM, 25% FC and 25% FP). Most of the reduction occurred during the maize season. The 25% CM, 25% FC and 25% FP treatments had no effect on NO emissions compared to the Nmin treatment. There was no obvious difference in annual N2O and NO emissions among the organic manures at the same application rate, probably due to their similar C/N ratio. Replacing a portion of the mineral fertilizer N with organic fertilizer N did not significantly affect crop grain yield, except for the 50% FC treatment in the wheat season. Overall, the results suggest that the combined application of 25% organic manure N plus 75% mineral fertilizer N had the most potential to mitigate N2O emissions while not affecting crop yield in the maize and wheat rotation system in this area of China.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Vaccines, MDPI AG, Vol. 8, No. 1 ( 2020-02-01), p. 61-
    Abstract: This study was designed to evaluate the immunogenicity and protective efficacy of two VP1 chimeric antigens of bacterial ghosts. Inoculation of the two VP1 chimeric antigens of bacterial ghosts into BALB/c mice markedly elicited humoral and mucosal immune responses. The specific antibodies induced by the chimeric ghosts protected mice not only against the virus that causes hand-foot-and-mouth disease but also against E. coli O157:H7 bacterial infection. In comparison with the negative control, immunization with the chimeric ghosts protected mice against two LD50 hand-foot-and-mouth disease viral infection. In addition, this specific immunity also protected the pups of pregnant mice immunized with the VP1 chimeric antigens of bacterial ghosts against 20 MLD E. coli O157:H7 infection. Taken together, the results of this study verify for the first time that the VP1 chimeric antigens of bacterial ghosts are target candidates for a new type of vaccine against hand-foot-and-mouth disease. Additionally, this vaccine strategy also elicited a stronger immune response against E. coli O157:H7.
    Type of Medium: Online Resource
    ISSN: 2076-393X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2703319-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Forests, MDPI AG, Vol. 14, No. 9 ( 2023-09-15), p. 1879-
    Abstract: Water and nitrogen sources have always been the primary limiting factors for vegetation growth in arid and semi-arid regions and play an important role in the physiological ecology of vegetation. In this work, we studied the effects of water deficit and nitrogen addition on the physiological traits and rhizosphere bacterial microbial community of Haloxylon ammodendron seedlings in sterilized and non-sterilized soil habitats. A pot experiment was conducted to control the water and nitrogen sources of H. ammodendron seedlings. The water deficit treatment was divided into two groups based on gradient: a normal water group (CK, 70% field water holding capacity) and water deficit group (D, 30% field water holding capacity). The nitrogen addition treatment was divided into a no addition group (CK, 2.8 mg·kg−1) and addition group (N, 22.4 mg·kg−1). At the end of the growing season, the biochemical indexes of H. ammodendron seedlings were measured, and the rhizosphere soil was subjected to 16S rDNA-high-throughput sequencing to determine the rhizosphere bacterial community composition of H. ammodendron seedlings under different treatments. The results showed that the root-to-crown ratio of H. ammodendron seedlings increased significantly (p 〈 0.05) under the water deficit treatment compared to the control and nitrogen addition treatments, indicating that H. ammodendron seedlings preferred to allocate biological carbon to the lower part of the ground. In contrast, plant height and root length were significantly lower (p 〈 0.05) under water deficit treatment compared to the control, and no significant change was observed under water deficit and nitrogen addition compared to the control, indicating that water deficit inhibited the growth of H. ammodendron seedlings and nitrogen addition mitigated the effect of water deficit on the growth of H. ammodendron seedlings. Under sterilized soil conditions, both water deficit and nitrogen addition significantly increased the abundance and diversity of bacterial communities in H. ammodendron seedlings (p 〈 0.05). Conversely, under non-sterilized conditions, both inhibited the diversity of microbial bacterial communities, and the microbial characteristic species under different controls were different. Therefore, in the short-term experiment, H. ammodendron seedlings were affected by water deficit and allocated greater quantities of biomass to the underground part, especially in the non-sterile microbial environment; different initial soil conditions resulted in divergent responses of rhizosphere bacterial communities to water deficit and nitrogen addition. Under different initial soil conditions, the same water deficit and nitrogen addition treatment will lead to the development of distinct differences in rhizosphere bacterial community composition.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Sensors, MDPI AG, Vol. 20, No. 12 ( 2020-06-19), p. 3473-
    Abstract: Acetone is a biomarker in the exhaled breath of diabetic patients; sensitive and selective detection of acetone in human exhaled breath plays an important role in noninvasive diagnosis. Tungsten oxide (especially for γ-WO3) is a promising material for the detection of breath acetone. It is generally believed that the stable metastable phase of WO3 (ε-WO3) is the main reason for the improved response to acetone detection. In this work, pure and Cr-doped urchin-like WO3 hollow spheres were synthesized by a facile hydrothermal approach. Analyses of the resulting materials via X-ray photoelectron spectroscopy (XPS) and Raman confirmed that they are mainly composed by γ-WO3. The gas sensing performances of pure and Cr-doped WO3 to acetone were systematically tested. Results show that the sensor based on pure WO3 annealed at 450 °C has a high response of 20.32 toward 100 ppm acetone at a working temperature of 250 °C. After doped with Cr, the response was increased 3.5 times higher than the pure WO3 sensor. The pure and Cr-doped WO3 sensors both exhibit a tiny response to other gases, low detection limits (ppb-level) and an excellent repeatability. The improvement of gas sensing properties could be attributed to an optimized morphology of Cr-doped WO3 by regulating the crystal growth and reducing the assembled nanowires’ diameter. The increasing number of oxygen vacancy and the introduction of impurity energy level with trap effect after Cr doping would lead to the wider depletion layer as well as a better gas sensing performance. This work will contribute to the development of new WO3 acetone sensors with a novel morphology and will explain the increased response after Cr doping from a new perspective.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Microorganisms, MDPI AG, Vol. 9, No. 8 ( 2021-08-19), p. 1769-
    Abstract: As an essential member of the B7 family, V-set and immunoglobulin domain-containing 4 (VSIG4) is expressed explicitly in tissue-resident macrophages (TRMs) and plays an essential role in maintaining the homeostasis of the environmental immune system. Here, we demonstrate that gene-targeted VSIG4-deficient mice infected with Enterohemorrhagic Escherichia coli (EHEC) display reduced bacterial burden. To reveal the role of VSIG4 in the fight against EHEC infection, we collected mice feces and used high-throughput 16S rRNA gene amplicons to detect changes in the flora. A total of 657330 sequences were sequenced on the PacBio platform, with an average length of 1498 bp. We found that VSIG4 deficiency could alter the gut microbiota by increasing diversity and shifting community composition. In particular, G_Akkermansia and G_Oscillo spiraceae increased significantly. These findings expand upon a prior observation that VSIG4 deficiency reduced EHEC colonization by changing the gut microbiota diversity and shifting community composition.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2720891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...