GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Diagnostics, MDPI AG, Vol. 11, No. 6 ( 2021-06-19), p. 1122-
    Abstract: Computed tomography (CT) represents the current standard for imaging of patients with acute life-threatening diseases. As some patients present with circulatory arrest, they require cardiopulmonary resuscitation. Automated chest compression devices are used to continue resuscitation during CT examinations, but tend to cause motion artifacts degrading diagnostic evaluation of the chest. The aim was to investigate and evaluate a CT protocol for motion-free imaging of thoracic structures during ongoing mechanical resuscitation. The standard CT trauma protocol and a CT protocol with ECG triggering using a simulated ECG were applied in an experimental setup to examine a compressible thorax phantom during resuscitation with two different compression devices. Twenty-eight phantom examinations were performed, 14 with AutoPulse® and 14 with corpuls cpr®. With each device, seven CT examinations were carried out with ECG triggering and seven without. Image quality improved significantly applying the ECG-triggered protocol (p 〈 0.001), which allowed almost artifact-free chest evaluation. With the investigated protocol, radiation exposure was 5.09% higher (15.51 mSv vs. 14.76 mSv), and average reconstruction time of CT scans increased from 45 to 76 s. Image acquisition using the proposed CT protocol prevents thoracic motion artifacts and facilitates diagnosis of acute life-threatening conditions during continuous automated chest compression.
    Type of Medium: Online Resource
    ISSN: 2075-4418
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662336-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancers, MDPI AG, Vol. 14, No. 22 ( 2022-11-08), p. 5476-
    Abstract: Splenomegaly is a common cross-sectional imaging finding with a variety of differential diagnoses. This study aimed to evaluate whether a deep learning model could automatically segment the spleen and identify the cause of splenomegaly in patients with cirrhotic portal hypertension versus patients with lymphoma disease. This retrospective study included 149 patients with splenomegaly on computed tomography (CT) images (77 patients with cirrhotic portal hypertension, 72 patients with lymphoma) who underwent a CT scan between October 2020 and July 2021. The dataset was divided into a training (n = 99), a validation (n = 25) and a test cohort (n = 25). In the first stage, the spleen was automatically segmented using a modified U-Net architecture. In the second stage, the CT images were classified into two groups using a 3D DenseNet to discriminate between the causes of splenomegaly, first using the whole abdominal CT, and second using only the spleen segmentation mask. The classification performances were evaluated using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Occlusion sensitivity maps were applied to the whole abdominal CT images, to illustrate which regions were important for the prediction. When trained on the whole abdominal CT volume, the DenseNet was able to differentiate between the lymphoma and liver cirrhosis in the test cohort with an AUC of 0.88 and an ACC of 0.88. When the model was trained on the spleen segmentation mask, the performance decreased (AUC = 0.81, ACC = 0.76). Our model was able to accurately segment splenomegaly and recognize the underlying cause. Training on whole abdomen scans outperformed training using the segmentation mask. Nonetheless, considering the performance, a broader and more general application to differentiate other causes for splenomegaly is also conceivable.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 1 ( 2022-12-31), p. 711-
    Abstract: Constant interactions between tumor cells and the extracellular matrix (ECM) influence the progression of prostate cancer (PCa). One of the key components of the ECM are collagen fibers, since they are responsible for the tissue stiffness, growth, adhesion, proliferation, migration, invasion/metastasis, cell signaling, and immune recruitment of tumor cells. To explore this molecular marker in the content of PCa, we investigated two different tumor volumes (500 mm3 and 1000 mm3) of a xenograft mouse model of PCa with molecular magnetic resonance imaging (MRI) using a collagen-specific probe. For in vivo MRI evaluation, T1-weighted sequences before and after probe administration were analyzed. No significant signal difference between the two tumor volumes could be found. However, we detected a significant difference between the signal intensity of the peripheral tumor area and the central area of the tumor, at both 500 mm3 (p 〈 0.01, n = 16) and at 1000 mm3 (p 〈 0.01, n = 16). The results of our histologic analyses confirmed the in vivo studies: There was no significant difference in the amount of collagen between the two tumor volumes (p 〉 0.05), but within the tumor, higher collagen expression was observed in the peripheral area compared with the central area of the tumor. Laser ablation with inductively coupled plasma mass spectrometry further confirmed these results. The 1000 mm3 tumors contained 2.8 ± 1.0% collagen and the 500 mm3 tumors contained 3.2 ± 1.2% (n = 16). There was a strong correlation between the in vivo MRI data and the ex vivo histological data (y = −0.068x + 1.1; R2 = 0.74) (n = 16). The results of elemental analysis by inductively coupled plasma mass spectrometry supported the MRI data (y = 3.82x + 0.56; R2 = 0.79; n = 7). MRI with the collagen-specific probe in PCa enables differentiation between different tumor areas. This may help to differentiate tumor from healthy tissue, potentially identifying tumor areas with a specific tumor biology.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Clinical Medicine, MDPI AG, Vol. 9, No. 5 ( 2020-05-21), p. 1551-
    Abstract: Background: Magnetic resonance relaxometry (MRR) offers highly reproducible pixel-wise parametric maps of T1 and T2 relaxation times, reflecting specific tissue properties, while diffusion-tensor imaging (DTI) is a promising technique for the characterization of microstructural changes, depending on the directionality of molecular motion. Both MMR and DTI may be used for non-invasive assessment of parenchymal changes caused by kidney injury or graft dysfunction. Methods: We examined 46 patients with kidney transplantation and 16 healthy controls, using T1/T2 relaxometry and DTI at 3 T. Twenty-two early transplants and 24 late transplants were included. Seven of the patients had prior renal biopsy (all of them dysfunctional allografts; 6/7 with tubular atrophy and 7/7 with interstitial fibrosis). Results: Compared to healthy controls, T1 and T2 relaxation times in the renal parenchyma were increased after transplantation, with the highest T1/T2 values in early transplants (T1: 1700 ± 53 ms/T2: 83 ± 6 ms compared to T1: 1514 ± 29 ms/T2: 78 ± 4 ms in controls). Medullary and cortical ADC/FA values were decreased in early transplants and highest in controls, with medullary FA values showing the most pronounced difference. Cortical renal T1, mean medullary FA and corticomedullary differentiation (CMD) values correlated best with renal function as measured by eGFR (cortical T1: r = −0.63, p 〈 0.001; medullary FA: r = 0.67, p 〈 0.001; FA CMD: r = 0.62, p 〈 0.001). Mean medullary FA proved to be a significant predictor for tubular atrophy (p 〈 0.001), while cortical T1 appeared as a significant predictor of interstitial fibrosis (p = 0.003). Conclusion: Cortical T1, medullary FA, and FA CMD might serve as new imaging biomarkers of renal function and histopathologic microstructure.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Biomedicines, MDPI AG, Vol. 9, No. 1 ( 2020-12-22), p. 1-
    Abstract: This review summarizes recent developments regarding molecular imaging markers for magnetic resonance imaging (MRI) of prostate cancer (PCa). Currently, the clinical standard includes MR imaging using unspecific gadolinium-based contrast agents. Specific molecular probes for the diagnosis of PCa could improve the molecular characterization of the tumor in a non-invasive examination. Furthermore, molecular probes could enable targeted therapies to suppress tumor growth or reduce the tumor size.
    Type of Medium: Online Resource
    ISSN: 2227-9059
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2720867-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Life, MDPI AG, Vol. 13, No. 1 ( 2023-01-13), p. 223-
    Abstract: Gleamer BoneView© is a commercially available AI algorithm for fracture detection in radiographs. We aim to test if the algorithm can assist in better sensitivity and specificity for fracture detection by residents with prospective integration into clinical workflow. Radiographs with inquiry for fracture initially reviewed by two residents were randomly assigned and included. A preliminary diagnosis of a possible fracture was made. Thereafter, the AI decision on presence and location of possible fractures was shown and changes to diagnosis could be made. Final diagnosis of fracture was made by a board-certified radiologist with over eight years of experience, or if available, cross-sectional imaging. Sensitivity and specificity of the human report, AI diagnosis, and assisted report were calculated in comparison to the final expert diagnosis. 1163 exams in 735 patients were included, with a total of 367 fractures (31.56%). Pure human sensitivity was 84.74%, and AI sensitivity was 86.92%. Thirty-five changes were made after showing AI results, 33 of which resulted in the correct diagnosis, resulting in 25 additionally found fractures. This resulted in a sensitivity of 91.28% for the assisted report. Specificity was 97.11, 84.67, and 97.36%, respectively. AI assistance showed an increase in sensitivity for both residents, without a loss of specificity.
    Type of Medium: Online Resource
    ISSN: 2075-1729
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662250-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Diagnostics, MDPI AG, Vol. 10, No. 11 ( 2020-11-10), p. 929-
    Abstract: Computed tomography (CT) plays an important role in the diagnosis of COVID-19. The aim of this study was to evaluate a simple, semi-quantitative method that can be used for identifying patients in need of subsequent intensive care unit (ICU) treatment and intubation. We retrospectively analyzed the initial CT scans of 28 patients who tested positive for SARS-CoV-2 at our Level-I center. The extent of lung involvement on CT was classified both subjectively and with a simple semi-quantitative method measuring the affected area at three lung levels. Competing risks Cox regression was used to identify factors associated with the time to ICU admission and intubation. Their potential diagnostic ability was assessed with receiver operating characteristic (ROC)/area under the ROC curves (AUC) analysis. A 10% increase in the affected lung parenchyma area increased the instantaneous risk of intubation (hazard ratio (HR) = 2.00) and the instantaneous risk of ICU admission (HR 1.73). The semi-quantitative measurement outperformed the subjective assessment diagnostic ability (AUC = 85.6% for ICU treatment, 71.9% for intubation). This simple measurement of the involved lung area in initial CT scans of COVID-19 patients may allow early identification of patients in need of ICU treatment/intubation and thus help make optimal use of limited ICU/ventilation resources in hospitals.
    Type of Medium: Online Resource
    ISSN: 2075-4418
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662336-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Diagnostics, MDPI AG, Vol. 12, No. 11 ( 2022-11-02), p. 2661-
    Abstract: For computed tomography (CT), representing the diagnostic standard for trauma patients, image quality is essential. The positioning of the patient’s arms next to the abdomen causes artifacts and is also considered to increase radiation exposure. The aim of this study was to evaluate the effect of various positionings during different CT examination steps on the extent of artifacts as well as radiation dose using iterative reconstruction (IR). 354 trauma-CTs were analyzed retrospectively. All datasets were reconstructed using IR and three different examination protocols were applied. Arm elevation led to a significant improvement of the image quality across all examination protocols (p 〈 0.001). Variation in arm positioning during image acquisition did not lead to a reduction of radiation dose (p = 0.123). Only elevation during scout acquisition resulted in the reduction of radiation exposure (p 〈 0.001). To receive high-quality CT images, patients should be placed with elevated arms for the trunk scan, as artifacts remain even with the IR. Arm repositioning during the examination itself had no effect on the applied radiation dose because its modulation refers to the initial scout obtained. In order to achieve a dose effect by different positioning, a two-scout protocol (dual scout) should be used.
    Type of Medium: Online Resource
    ISSN: 2075-4418
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662336-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Tomography, MDPI AG, Vol. 7, No. 3 ( 2021-09-17), p. 477-487
    Abstract: Aim was to develop a user-friendly method for creating parametric maps that would provide a comprehensible visualization and allow immediate quantification of radiomics features. For this, a self-explanatory graphical user interface was designed, and for the proof of concept, maps were created for CT and MR images and features were compared to those from conventional extractions. Especially first-order features were concordant between maps and conventional extractions, some even across all examples. Potential clinical applications were tested on CT and MR images for the differentiation of pulmonary lesions. In these sample applications, maps of Skewness enhanced the differentiation of non-malignant lesions and non-small lung carcinoma manifestations on CT images and maps of Variance enhanced the differentiation of pulmonary lymphoma manifestations and fungal infiltrates on MR images. This new and simple method for creating parametric maps makes radiomics features visually perceivable, allows direct feature quantification by placing a region of interest, can improve the assessment of radiological images and, furthermore, can increase the use of radiomics in clinical routine.
    Type of Medium: Online Resource
    ISSN: 2379-139X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2857000-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Tomography, MDPI AG, Vol. 7, No. 4 ( 2021-12-13), p. 950-960
    Abstract: The aim of this study was to develop a deep learning-based algorithm for fully automated spleen segmentation using CT images and to evaluate the performance in conditions directly or indirectly affecting the spleen (e.g., splenomegaly, ascites). For this, a 3D U-Net was trained on an in-house dataset (n = 61) including diseases with and without splenic involvement (in-house U-Net), and an open-source dataset from the Medical Segmentation Decathlon (open dataset, n = 61) without splenic abnormalities (open U-Net). Both datasets were split into a training (n = 32.52%), a validation (n = 9.15%) and a testing dataset (n = 20.33%). The segmentation performances of the two models were measured using four established metrics, including the Dice Similarity Coefficient (DSC). On the open test dataset, the in-house and open U-Net achieved a mean DSC of 0.906 and 0.897 respectively (p = 0.526). On the in-house test dataset, the in-house U-Net achieved a mean DSC of 0.941, whereas the open U-Net obtained a mean DSC of 0.648 (p 〈 0.001), showing very poor segmentation results in patients with abnormalities in or surrounding the spleen. Thus, for reliable, fully automated spleen segmentation in clinical routine, the training dataset of a deep learning-based algorithm should include conditions that directly or indirectly affect the spleen.
    Type of Medium: Online Resource
    ISSN: 2379-139X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2857000-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...