GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nutrients, MDPI AG, Vol. 15, No. 16 ( 2023-08-15), p. 3585-
    Abstract: Parkinson’s disease (PD) is a degenerative condition resulting from the loss of dopaminergic neurons. This neuronal loss leads to motor and non-motor neurological symptoms. Most PD cases are idiopathic, and no cure is available. Recently, it has been proposed that insulin resistance (IR) could be a central factor in PD development. IR has been associated with PD neuropathological features like α-synuclein aggregation, dopaminergic neuronal loss, neuroinflammation, mitochondrial dysfunction, and autophagy. These features are related to impaired neurological metabolism, neuronal death, and the aggravation of PD symptoms. Moreover, pharmacological options that involve insulin signaling improvement and dopaminergic and non-dopaminergic strategies have been under development. These drugs could prevent the metabolic pathways involved in neuronal damage. All these approaches could improve PD outcomes. Also, new biomarker identification may allow for an earlier PD diagnosis in high-risk individuals. This review describes the main pathways implicated in PD development involving IR. Also, it presents several therapeutic options that are directed at insulin signaling improvement and could be used in PD treatment. The understanding of IR molecular mechanisms involved in neurodegenerative development could enhance PD therapeutic options and diagnosis.
    Type of Medium: Online Resource
    ISSN: 2072-6643
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518386-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nutrients, MDPI AG, Vol. 15, No. 12 ( 2023-06-13), p. 2728-
    Abstract: The very-low-calorie KD (VLCKD) is characterized by a caloric intake of under 800 kcal/day divided into less than 50 g/day of carbohydrate (13%) and 1 to 1.5 g of protein/kg of body weight (44%) and 43% of fat. This low carbohydrate intake changes the energy source from glucose to ketone bodies. Moreover, clinical trials have consistently shown a beneficial effect of VLCKD in several diseases, such as heart failure, schizophrenia, multiple sclerosis, Parkinson’s, and obesity, among others. The gut microbiota has been associated with the metabolic conditions of a person and is regulated by diet interactions; furthermore, it has been shown that the microbiota has a role in body weight homeostasis by regulating metabolism, appetite, and energy. Currently, there is increasing evidence of an association between gut microbiota dysbiosis and the pathophysiology of obesity. In addition, the molecular pathways, the role of metabolites, and how microbiota modulation could be beneficial remain unclear, and more research is needed. The objective of the present article is to contribute with an overview of the impact that VLCKD has on the intestinal microbiota composition of individuals with obesity through a literature review describing the latest research regarding the topic and highlighting which bacteria phyla are associated with obesity and VLCKD.
    Type of Medium: Online Resource
    ISSN: 2072-6643
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518386-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Pathogens, MDPI AG, Vol. 12, No. 4 ( 2023-04-17), p. 610-
    Abstract: Avian influenza (AI) is a contagious disease among the poultry population with high avian mortality, which generates significant economic losses and elevated costs for disease control and outbreak eradication. AI is caused by an RNA virus part of the Orthomyxoviridae family; however, only Influenzavirus A is capable of infecting birds. AI pathogenicity is based on the lethality, signs, and molecular characteristics of the virus. Low pathogenic avian influenza (LPAI) virus has a low mortality rate and ability to infect, whereas the highly pathogenic avian influenza (HPAI) virus can cross respiratory and intestinal barriers, diffuse to the blood, damage all tissues of the bird, and has a high mortality rate. Nowadays, avian influenza is a global public health concern due to its zoonotic potential. Wild waterfowl is the natural reservoir of AI viruses, and the oral–fecal path is the main transmission route between birds. Similarly, transmission to other species generally occurs after virus circulation in densely populated infected avian species, indicating that AI viruses can adapt to promote the spread. Moreover, HPAI is a notifiable animal disease; therefore, all countries must report infections to the health authorities. Regarding laboratory diagnoses, the presence of influenza virus type A can be identified by agar gel immunodiffusion (AGID), enzyme immunoassay (EIA), immunofluorescence assays, and enzyme-linked immunoadsorption assay (ELISAs). Furthermore, reverse transcription polymerase chain reaction is used for viral RNA detection and is considered the gold standard for the management of suspect and confirmed cases of AI. If there is suspicion of a case, epidemiological surveillance protocols must be initiated until a definitive diagnosis is obtained. Moreover, if there is a confirmed case, containment actions should be prompt and strict precautions must be taken when handling infected poultry cases or infected materials. The containment measures for confirmed cases include the sanitary slaughter of infected poultry using methods such as environment saturation with CO2, carbon dioxide foam, and cervical dislocation. For disposal, burial, and incineration, protocols should be followed. Lastly, disinfection of affected poultry farms must be carried out. The present review aims to provide an overview of the avian influenza virus, strategies for its management, the challenges an outbreak can generate, and recommendations for informed decision making.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Pharmaceuticals, MDPI AG, Vol. 13, No. 7 ( 2020-07-19), p. 156-
    Abstract: Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.
    Type of Medium: Online Resource
    ISSN: 1424-8247
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2193542-7
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Genes, MDPI AG, Vol. 11, No. 7 ( 2020-07-21), p. 834-
    Abstract: Telomere maintenance mechanisms (TMM) are used by cancer cells to avoid apoptosis, 85–90% reactivate telomerase, while 10–15% use the alternative lengthening of telomeres (ALT). Due to anti-telomerase-based treatments, some tumors switch from a telomerase-dependent mechanism to ALT; in fact, the co-existence between both mechanisms has been observed in some cancers. Although different elements in the ALT pathway are uncovered, some molecular mechanisms are still poorly understood. Therefore, with the aim to identify potential molecular markers for the study of ALT, we combined in silico approaches in a 411 telomere maintenance gene set. As a consequence, we conducted a genomic analysis of these genes in 31 Pan-Cancer Atlas studies from The Cancer Genome Atlas and found 325,936 genomic alterations; from which, we identified 20 genes highly mutated in the cancer studies. Finally, we made a protein-protein interaction network and enrichment analysis to observe the main pathways of these genes and discuss their role in ALT-related processes, like homologous recombination and homology directed repair. Overall, due to the lack of understanding of the molecular mechanisms of ALT cancers, we proposed a group of genes, which after ex vivo validations, could represent new potential therapeutic markers in the study of ALT.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...