GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Remote Sensing, MDPI AG, Vol. 12, No. 24 ( 2020-12-16), p. 4112-
    Abstract: A lockdown was implemented in Canada mid-March 2020 to limit the spread of COVID-19. In the wake of this lockdown, declines in nitrogen dioxide (NO2) were observed from the TROPOspheric Monitoring Instrument (TROPOMI). A method is presented to quantify how much of this decrease is due to the lockdown itself as opposed to variability in meteorology and satellite sampling. The operational air quality forecast model, GEM-MACH (Global Environmental Multi-scale - Modelling Air quality and CHemistry), was used together with TROPOMI to determine expected NO2 columns that represents what TROPOMI would have observed for a non-COVID scenario. Applying this methodology to southern Ontario, decreases in NO2 emissions due to the lockdown were seen, with an average 40% (roughly 10 kt[NO2]/yr) in Toronto and Mississauga and even larger declines in the city center. Natural and satellite sampling variability accounted for as much as 20–30%, which demonstrates the importance of taking meteorology into account. A model run with reduced emissions (from 65 kt[NO2] /yr to 40 kt[NO2]/yr in the Greater Toronto Area) based on emission activity data during the lockdown period was found to be consistent with TROPOMI NO2 columns.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 14, No. 7 ( 2022-03-28), p. 1625-
    Abstract: We present tropospheric nitrogen dioxide (NO2) changes observed by the Canadian Pandora measurement program in the Greater Toronto Area (GTA), Canada, and compare the results with surface NO2 concentrations measured via in situ instruments to assess the local emission changes during the first two years of the COVID-19 pandemic. In the City of Toronto, the first lockdown period started on 15 March 2020, and continued until 24 June 2020. ECMWF Reanalysis v5 (ERA-5) wind information was used to facilitate the data analysis and reveal detailed local emission changes from different areas of the City of Toronto. Evaluating seven years of Pandora observations, a clear NO2 reduction was found, especially from the more polluted downtown Toronto and airport areas (e.g., declined by 35% to 40% in 2020 compared to the 5-year mean value from these areas) during the first two years of the pandemic. Compared to the sharp decline in NO2 emissions in 2020, the atmospheric NO2 levels in 2021 started to recover, but are still below the mean values in pre-pandemic time. For some sites, the pre-pandemic NO2 local morning rush hour peak has still not returned in 2021, indicating a change in local traffic and commuter patterns. The long-term (12 years) surface air quality record shows a statistically significant decline in NO2 with and without April to September 2020 observations (trend of −4.1%/yr and −3.9%/yr, respectively). Even considering this long-term negative trend in NO2, the observed NO2 reduction (from both Pandora and in situ) in the early stage of the pandemic is still statistically significant. By implementing the new wind-based validation method, the high-resolution satellite instrument (TROPOMI) can also capture the local NO2 emission pattern changes to a good level of agreement with the ground-based observations. The bias between ground-based and satellite observations during the pandemic was found to have a positive shift (5–12%) than the bias during the pre-pandemic period.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...