GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Sensors, MDPI AG, Vol. 21, No. 20 ( 2021-10-13), p. 6785-
    Abstract: The COVID-19 pandemic has been the most critical public health issue in modern history due to its highly infectious and deathly potential, and the limited access to massive, low-cost, and reliable testing has significantly worsened the crisis. The recovery and the vaccination of millions of people against COVID-19 have made serological tests highly relevant to identify the presence and levels of SARS-CoV-2 antibodies. Due to its advantages, microfluidic-based technologies represent an attractive alternative to the conventional testing methodologies used for these purposes. In this work, we described the development of an automated ELISA on-chip capable of detecting anti-SARS-CoV-2 antibodies in serum samples from COVID-19 patients and vaccinated individuals. The colorimetric reactions were analyzed with a microplate reader. No statistically significant differences were observed when comparing the results of our automated ELISA on-chip against the ones obtained from a traditional ELISA on a microplate. Moreover, we demonstrated that it is possible to carry out the analysis of the colorimetric reaction by performing basic image analysis of photos taken with a smartphone, which constitutes a useful alternative when lacking specialized equipment or a laboratory setting. Our automated ELISA on-chip has the potential to be used in a clinical setting and mitigates some of the burden caused by testing deficiencies.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  International Journal of Environmental Research and Public Health Vol. 16, No. 22 ( 2019-11-13), p. 4450-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 16, No. 22 ( 2019-11-13), p. 4450-
    Abstract: As the technology of electronic nicotine delivery systems (ENDS), including e-cigarettes, evolves, assessing metal concentrations in liquids among brands over time becomes challenging. A method for quantification of chromium, nickel, copper, zinc, cadmium, tin, and lead in ENDS liquids using triple quadrupole inductively coupled plasma mass spectrometry was developed. The method’s limits of detection (LODs) were 0.031, 0.032, 3.15, 1.27, 0.108, 0.099, 0.066 µg/g for Cr, Ni, Cu, Zn, Cd, Sn, and Pb respectively. Liquids analyzed were from different brands and flavors of refill bottles or single-use, rechargeable, and pod devices from different years. Scanning electron microscopy with energy dispersive spectroscopy further evaluated the device components’ compositions. Refill liquids before contacting a device were below lowest reportable levels (LRL) for all metals. Copper and zinc were elevated in liquids from devices containing brass. Cadmium was 〈 LRL in all liquids and was not observed in device components. Cr, Ni, Cu, Zn, Sn, and Pb, reported in µg/g, ranged from 〈 LRL to 0.396, 4.04, 903, 454, 0.898, and 13.5 respectively. Elevated metal concentrations in the liquid were also elevated in aerosol from the corresponding device. The data demonstrates the impact of device design and materials on toxic metals in ENDS liquid.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Clinical Medicine, MDPI AG, Vol. 10, No. 24 ( 2021-12-14), p. 5863-
    Abstract: Background: The COVID-19 pandemic carries a high burden of morbidity and mortality worldwide. We aimed to identify possible predictors of in-hospital major cardiovascular (CV) events in COVID-19. Methods: We retrospectively included patients hospitalized for COVID-19 from 10 centers. Clinical, biochemical, electrocardiographic, and imaging data at admission and medications were collected. Primary endpoint was a composite of in-hospital CV death, acute heart failure (AHF), acute myocarditis, arrhythmias, acute coronary syndromes (ACS), cardiocirculatory arrest, and pulmonary embolism (PE). Results: Of the 748 patients included, 141(19%) reached the set endpoint: 49 (7%) CV death, 15 (2%) acute myocarditis, 32 (4%) sustained-supraventricular or ventricular arrhythmias, 14 (2%) cardiocirculatory arrest, 8 (1%) ACS, 41 (5%) AHF, and 39 (5%) PE. Patients with CV events had higher age, body temperature, creatinine, high-sensitivity troponin, white blood cells, and platelet counts at admission and were more likely to have systemic hypertension, renal failure (creatinine ≥ 1.25 mg/dL), chronic obstructive pulmonary disease, atrial fibrillation, and cardiomyopathy. On univariate and multivariate analysis, troponin and renal failure were associated with the composite endpoint. Kaplan–Meier analysis showed a clear divergence of in-hospital composite event-free survival stratified according to median troponin value and the presence of renal failure (Log rank p 〈 0.001). Conclusions: Our findings, derived from a multicenter data collection study, suggest the routine use of biomarkers, such as cardiac troponin and serum creatinine, for in-hospital prediction of CV events in patients with COVID-19.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Toxics, MDPI AG, Vol. 9, No. 10 ( 2021-09-29), p. 240-
    Abstract: Research gaps exist in toxic metals characterization in e-cigarette, or vaping, products (EVPs) as these analytes typically have low concentrations and most standard aerosol trapping techniques have high metals background. An additional complication arises from differences in the EVP liquid formulations with nicotine products having polar properties and non-nicotine products often being non-polar. Differences in polar and non-polar matrices and the subsequent aerosol chemistries from various EVPs required modifications of our previously reported nicotine-based EVP aerosol method. Validation and application of the expanded method, suitable for both hydrophobic and hydrophilic aerosols, are reported here. The metals analyzed for this study were Al, Cr, Fe, Co, Ni, Cu, Cd, Sn, Ba, and Pb. The method limits of detection for the modified method ranged from 0.120 ng/10 puffs for Cd to 29.3 ng/10 puffs for Al and were higher than reported for the previous method. Results of the analyses for metals in aerosols obtained from 50 EVP products are reported. Cannabinoid based EVP aerosols were below reportable levels, except for one sample with 16.08 ng/10 puffs for Cu. Nicotine-based EVP results ranged from 6.72 ng/10 puffs for Pb to 203 ng/10 puffs for Sn. Results of the analyses for these metals showed that aerosols from only 5 of the 50 devices tested had detectable metal concentrations. Concentrations of toxic elements in the aerosols for nicotine-based EVP aerosol metal concentration ranges were consistent with previously published results of aerosol analyses from this class of devices.
    Type of Medium: Online Resource
    ISSN: 2305-6304
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2733883-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...