GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Water, MDPI AG, Vol. 15, No. 10 ( 2023-05-09), p. 1805-
    Abstract: Floods are a natural phenomenon that cause damage to structures and property as well as negatively affect human life. Assessing the extent, speed, power, and depth of flooding has always been a challenge for water resource planners. This research developed a hydraulic simulation model for the Cubanicay and Bélico urban rivers embedded in the city of Santa Clara, Cuba. The methodology was based on a one-dimensional model of the Hydrological Engineering River Analysis System (HEC-RAS) and GIS-based methods. The HEC-RAS model (Beta) and three modeling flood tests for scenarios of 1% (100 years), 2% (50 years), and 10% (10 years) of probability for hydrometeorological events were analyzed. Bank lines, flow path lines, and cross-section cut lines were extracted from Digital Elevation Models. Manning’s roughness coefficients were considered for the channel morphology and soil typology. The flood Beta model results were accurate with a difference of ±0.10 m considering the water footprint found in the field. The results showed that the areas near the control section 2 + 87 presented a high risk of flooding. The flood limit map for urban areas could be an important tool for researchers, planners, and local governments for risk assessment and to develop evacuation plans and flood mitigation strategies in order to reduce human and economic losses during a flood.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 1 ( 2022-12-26), p. 400-
    Abstract: Xenobiotic reductase B (XenB) catalyzes the reduction of the aromatic ring or nitro groups of nitroaromatic compounds with methyl, amino or hydroxyl radicals. This reaction is of biotechnological interest for bioremediation, the reuse of industrial waste or the activation of prodrugs. However, the structural factors that explain the binding of XenB to different substrates are unknown. Molecular dynamics simulations and quantum mechanical calculations were performed to identify the residues involved in the formation and stabilization of the enzyme/substrate complex and to explain the use of different substrates by this enzyme. Our results show that Tyr65 and Tyr335 residues stabilize the ligands through hydrophobic interactions mediated by the aromatic rings of these aminoacids. The higher XenB activity determined with the substrates 1,3,5-trinitrobenzene and 2,4,6-trinitrotoluene is consistent with the lower energy of the highest occupied molecular orbital (LUMO) orbitals and a lower energy of the homo orbital (LUMO), which favors electrophile and nucleophilic activity, respectively. The electrostatic potential maps of these compounds suggest that the bonding requires a large hydrophobic region in the aromatic ring, which is promoted by substituents in ortho and para positions. These results are consistent with experimental data and could be used to propose point mutations that allow this enzyme to process new molecules of biotechnological interest.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Energies, MDPI AG, Vol. 14, No. 2 ( 2021-01-11), p. 368-
    Abstract: Ultraviolet radiation is a highly energetic component of the solar spectrum that needs to be monitored because is harmful to life on Earth, especially in areas where the ozone layer has been depleted, like Chile. This work is the first to address the long-term (five-year) behaviour of ultraviolet erythemal radiation (UVER) in Santiago, Chile (33.5° S, 70.7° W, 500 m) using in situ measurements and empirical modelling. Observations indicate that to alert the people on the risks of UVER overexposure, it is necessary to use, in addition to the currently available UV index (UVI), three more erythema indices: standard erythemal doses (SEDs), minimum erythemal doses (MEDs), and sun exposure time (tery). The combination of UVI, SEDs, MEDs, and tery shows that in Santiago, individuals with skin types III and IV are exposed to harmfully high UVER doses for 46% of the time that UVI indicates is safe. Empirical models predicted hourly and daily values UVER in Santiago with great accuracy and can be applied to other Chilean urban areas with similar climate. This research inspires future advances in reconstructing large datasets to analyse the UVER in Central Chile, its trends, and its changes.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Remote Sensing, MDPI AG, Vol. 15, No. 3 ( 2023-01-18), p. 573-
    Abstract: Accurate rainfall measurement is a challenge, especially in regions with diverse climates and complex topography. Thus, knowledge of precipitation patterns requires observational networks with a very high spatial and temporal resolution, which is very difficult to construct in remote areas with complex geological features such as desert areas and mountains, particularly in countries with high topographical variability such as Chile. This study evaluated the performance of the near-real-time Integrated Multi-satellite Retrievals for GPM (IMERG) Early product throughout Chile, a country located in South America between 16°S–66°S latitude. The accuracy of the IMERG Early was assessed at different special and temporal scales from 2015 to 2020. Relative Bias (PBIAS), Mean Absolute Error (MAE), and Root-Mean-Squared Error (RMSE) were used to quantify the errors in the satellite estimates, while the Probability of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) were used to evaluate product detection accuracy. In addition, the consistency between the satellite estimates and the ground observations was assessed using the Correlation Coefficient (CC). The spatial results show that the IMERG Early had the best performance over the central zone, while the best temporal performance was detected for the yearly precipitation dataset. In addition, as latitude increases, so do errors. Also, the satellite product tends to slightly overestimate the precipitation throughout the country. The results of this study could contribute towards the improvement of the IMERG algorithms and open research opportunities in areas with high latitudes, such as Chile.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Remote Sensing, MDPI AG, Vol. 13, No. 16 ( 2021-08-07), p. 3133-
    Abstract: Remote sensing was used as an early alert tool for water clarity changes in five Araucanian Lakes in South-Central Chile. Turbidity records are scarce or unavailable over large and remote areas needed to fully understand the factors associated with turbidity, and their spatial-temporal representation remains a limitation. This work aimed to develop and validate empirical models to estimate values of turbidity from Landsat images and determine the spatial distribution of estimated turbidity in the selected Araucanian Lakes. Secchi disk depth measurements were linked with turbidity measurements to obtain a turbidity dataset. This in turn was used to develop and validate a set of empirical models to predict turbidity based on four single bands and 16 combination bands from 15 multispectral Landsat images. The best empirical models predicted turbidity over the range of 0.3–12.3 NTUs with RMSE values around 0.31–1.03 NTU, R2 (Index of Agreement IA) around 0.93–0.99 (0.85–0.97) and mean bias error (MBE) around (−0.36–0.44 NTU). Estimation maps to analyze the temporal-spatial turbidity variation in the lakes were constructed. Finally, it was found that the meteorological conditions may affect the variation of turbidity, mainly precipitation and wind speed. The data indicate that the turbidity has slightly increased in winter–spring. These models will be used in the future to reconstruct large datasets that allow analyzing transparency trends in those lakes.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Applied Sciences, MDPI AG, Vol. 12, No. 5 ( 2022-03-02), p. 2575-
    Abstract: Interferometric synthetic aperture radar is an effective means of measuring changes in the altitude of the Earth’s surface. In this research, the areas of surface deformation associated with low- and medium-intensity seismic events in Central Chile were analyzed using SENTINEL 1 satellite radar interferograms and geographical information system (GIS) tools. The persistent scatterer method was used to reduce noise from conventional InSAR methods. The results revealed that the coastal zone of Central Chile has a high density of daily earthquakes with a prevalence (93.03%) of low- and medium-intensity earthquakes. Monthly deformation maps were developed for the coast of the Biobio region in Central Chile. A clear deformation pattern is defined along the coast, being greater in the Arauco, Lota and Lebu areas. It was also shown that there was a slight upward trend in the north and northeast zone (i.e., δup ~3 mm/year), while there was an obvious accentuated upward trend (i.e., δup ~24 mm/year) in the southern part. This movement increases as latitude increases. This pattern is related to the daily seismic activity, the product of the movement between plates, and the geological faults located in the area. The deformation and trend maps provide certainty in terms of where hotspots are located, e.g., the most hazardous areas in the study zone, which can be applied to urban planning and/or safety assessment.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Remote Sensing, MDPI AG, Vol. 14, No. 18 ( 2022-09-13), p. 4568-
    Abstract: The diffuse attenuation coefficient of photosynthetically active radiation is an important inherent optical property of the subaquatic light field. This parameter, as a measure of the transparency of the medium, is a good indicator of water quality. Degradation of the optical properties of water due to anthropogenic disturbances is a common phenomenon in freshwater ecosystems. In this study, we used four algorithm-based Landsat 8 OLI and Sentinel-2A/B MSI images to estimate the diffuse attenuation coefficient of photosynthetically active radiation in Lake Villarrica located in south-central Chile. The algorithms’ estimated data from the ACOLITE module were validated with in situ measurements from six sampling stations. Seasonal and intralake variations of the light attenuation coefficient were studied. The relationship between the diffuse attenuation coefficient of photosynthetically active radiation, meteorological parameters, and an optical classification was also explored. The best results were obtained with QAA v6 KdPAR Nechad (R2 = 0.931, MBE = 0.023 m−1, RMSE = 0.088 m−1, and MAPE = 35.9%) for spring and QAA v5 Kd490 algorithms (R2 = 0.919, MBE = −0.064 m−1, RMSE = −0.09 m−1, and MAPE = 30.3%) for summer. High KdPAR values are associated with the strong wind and precipitation events suggest they are caused by sediment resuspension. Finally, an optical classification of freshwater ecosystems was proposed for this lake. The promising results of this study suggest that the combination of in situ data and observation satellites can be useful for assessing the bio-optical state of water and water quality dynamics in Chilean aquatic systems.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...