GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Climate, MDPI AG, Vol. 10, No. 6 ( 2022-06-16), p. 86-
    Abstract: In rapidly urbanizing areas, natural vegetation becomes fragmented, making conservation planning challenging, particularly as climate change accelerates fire risk. We studied urban forest fragments in two threatened eucalypt-dominated (scribbly gum woodland, SGW, and ironbark forest, IF) communities across ~2000 ha near Sydney, Australia, to evaluate effects of fire frequency (0–4 in last 25 years) and time since fire (0.5 to 〉 25 years) on canopy structure, habitat quality and biodiversity (e.g., species richness). Airborne lidar was used to assess canopy height and density, and ground-based surveys of 148 (400 m2) plots measured leaf area index (LAI), plant species composition and habitat metrics such as litter cover and hollow-bearing trees. LAI, canopy density, litter, and microbiotic soil crust increased with time since fire in both communities, while tree and mistletoe cover increased in IF. Unexpectedly, plant species richness increased with fire frequency, owing to increased shrub richness which offset decreased tree richness in both communities. These findings indicate biodiversity and canopy structure are generally resilient to a range of times since fire and fire frequencies across this study area. Nevertheless, reduced arboreal habitat quality and subtle shifts in community composition of resprouters and obligate seeders signal early concern for a scenario of increasing fire frequency under climate change. Ongoing assessment of fire responses is needed to ensure that biodiversity, canopy structure and ecosystem function are maintained in the remaining fragments of urban forests under future climate change which will likely drive hotter and more frequent fires.
    Type of Medium: Online Resource
    ISSN: 2225-1154
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2720343-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Microorganisms, MDPI AG, Vol. 11, No. 7 ( 2023-07-11), p. 1789-
    Abstract: As the COVID-19 pandemic continues, variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge. Immunogenicity evaluation of vaccines and identification of correlates of protection for vaccine effectiveness is critical to aid the development of vaccines against emerging variants. Anti-recombinant spike (rS) protein immunoglobulin G (IgG) quantitation in the systemic circulation (serum/plasma) is shown to correlate with vaccine efficacy. Thus, an enzyme-linked immunosorbent assay (ELISA)-based binding assay to detect SARS-CoV-2 (ancestral and variant strains) anti-rS IgG in human serum samples was developed and validated. This assay successfully met acceptance criteria for inter/intra-assay precision, specificity, selectivity, linearity, lower/upper limits of quantitation, matrix effects, and assay robustness. The analyte in serum was stable for up to 8 freeze/thaw cycles and 2 years in −80 °C storage. Similar results were observed for the Beta, Delta, and Omicron BA.1/BA.5/XBB.1.5 variant-adapted assays. Anti-rS IgG assay results correlated significantly with neutralization and receptor binding inhibition assays. In addition, usage of international reference standards allows data extrapolation to WHO international units (BAU/mL), facilitating comparison of results with other IgG assays. This anti-rS IgG assay is a robust, high-throughput method to evaluate binding IgG responses to S protein in serum, enabling rapid development of effective vaccines against emerging COVID-19 variants.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Clinical Medicine, MDPI AG, Vol. 9, No. 6 ( 2020-06-05), p. 1759-
    Abstract: The aim of this study was to investigate the management and outcome in the post-laser twin anemia polycythemia sequence (TAPS). Data of the international TAPS Registry, collected between 2014 and 2019, were used for this study. The primary outcomes were perinatal mortality and severe neonatal morbidity. Secondary outcomes included a risk factor analysis for perinatal mortality and severe neonatal morbidity. A total of 164 post-laser TAPS pregnancies were included, of which 92% (151/164) were diagnosed antenatally and 8% (13/164) postnatally. The median number of days between laser for TTTS and detection of TAPS was 14 (IQR: 7–28, range: 1–119). Antenatal management included expectant management in 43% (62/151), intrauterine transfusion with or without partial exchange transfusion in 29% (44/151), repeated laser surgery in 15% (24/151), selective feticide in 7% (11/151), delivery in 6% (9/151), and termination of pregnancy in 1% (1/151). The median gestational age (GA) at birth was 31.7 weeks (IQR: 28.6–33.7; range: 19.0–41.3). The perinatal mortality rate was 25% (83/327) for the total group, 37% (61/164) for donors, and 14% (22/163) for recipients (p 〈 0.001). Severe neonatal morbidity was detected in 40% (105/263) of the cohort and was similar for donors (43%; 51/118) and recipients (37%; 54/145), p = 0.568. Independent risk factors for spontaneous perinatal mortality were antenatal TAPS Stage 4 (OR = 3.4, 95%CI 1.4-26.0, p = 0.015), TAPS donor status (OR = 4.2, 95%CI 2.1–8.3, p 〈 0.001), and GA at birth (OR = 0.8, 95%CI 0.7–0.9, p = 0.001). Severe neonatal morbidity was significantly associated with GA at birth (OR = 1.5, 95%CI 1.3–1.7, p 〈 0.001). In conclusion, post-laser TAPS most often occurs within one month after laser for TTTS, but may develop up to 17 weeks after initial surgery. Management is mostly expectant, but varies greatly, highlighting the lack of consensus on the optimal treatment and heterogeneity of the condition. Perinatal outcome is poor, particularly due to the high rate of perinatal mortality in donor twins.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecules, MDPI AG, Vol. 26, No. 19 ( 2021-09-22), p. 5745-
    Abstract: The dihydropyranoindole structures were previously identified as promising scaffolds for improving the anti-cancer activity of histone deacetylase inhibitors. This work describes the synthesis of related furoindoles and their ability to synergize with suberoylanilide hydroxamic acid (SAHA) against neuroblastoma and breast cancer cells. The nucleophilic substitution of hydroxyindole methyl esters with α-haloketones yielded the corresponding arylether ketones, which were subsequently cyclized to tricyclic and tetracyclic furoindoles. The furoindoles showed promising individual cytotoxic efficiency against breast cancer cells, as well as decent SAHA enhancement against cancer cells in select cases. Interestingly, the best IC50 value was obtained with the non-cyclized intermediate.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Vaccines, MDPI AG, Vol. 10, No. 8 ( 2022-08-18), p. 1338-
    Abstract: Non-human primate (NHP) efficacy data for several Ebola virus (EBOV) vaccine candidates exist, but definitive correlates of protection (CoP) have not been demonstrated, although antibodies to the filovirus glycoprotein (GP) antigen and other immunological endpoints have been proposed as potential CoPs. Accordingly, studies that could elucidate biomarker(s) that statistically correlate, whether mechanistically or not, with protection are warranted. The primary objective of this study was to evaluate potential CoP for Novavax EBOV GP vaccine candidate administered at different doses to cynomolgus macaques using the combined data from two separate, related studies containing a total of 44 cynomolgus macaques. Neutralizing antibodies measured by pseudovirion neutralization assay (PsVNA) and anti-GP IgG binding antibodies were evaluated as potential CoP using logistic regression models. The predictive ability of these models was assessed using the area under the receiver operating characteristic (ROC) curve (AUC). Fitted models indicated a statistically significant relationship between survival and log base 10 (log10) transformed anti-GP IgG antibodies, with good predictive ability of the model. Neither (log10 transformed) PsVNT50 nor PsVNT80 titers were statistically significant predictors of survival, though predictive ability of both models was good. Predictive ability was not statistically different between any pair of models. Models that included immunization dose in addition to anti-GP IgG antibodies failed to detect statistically significant effects of immunization dose. These results support anti-GP IgG antibodies as a correlate of protection. Total assay variabilities and geometric coefficients of variation (GCVs) based on the study data appeared to be greater for both PsVNA readouts, suggesting the increased assay variability may account for non-significant model results for PsVNA despite the good predictive ability of the models. The statistical approach to evaluating CoP for this EBOV vaccine may prove useful for advancing research for Sudan virus (SUDV) and Marburg virus (MARV) candidate vaccines.
    Type of Medium: Online Resource
    ISSN: 2076-393X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2703319-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Molecules, MDPI AG, Vol. 21, No. 7 ( 2016-07-14), p. 916-
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2016
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecules, MDPI AG, Vol. 25, No. 6 ( 2020-03-18), p. 1377-
    Abstract: The dihydropyranoindole scaffold was identified as a promising target for improving the anti-cancer activity of HDAC inhibitors from the preliminary screening of a library of compounds. A suitable methodology has been developed for the preparation of novel dihydropyranoindoles via the Hemetsberger indole synthesis using azido-phenylacrylates, derived from the reaction of corresponding alkynyl-benzaldehydes with methyl azidoacetate, followed by thermal cyclization in high boiling solvents. Anti-cancer activity of all the newly synthesized compounds was evaluated against the SH-SY5Y and Kelly neuroblastoma cells as well as the MDA-MB-231 and MCF-7 breast adenocarcinoma cell lines. Biological studies showed that the tetracyclic systems had significant cytotoxic activity at higher concentration against the neuroblastoma cancer cells. More importantly, these systems, at the lower concentration, considerably enhanced the SAHA toxicity. In addition to that, the toxicity of designated systems on the healthy human cells was found to be significantly less than the cancer cells.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2009
    In:  Remote Sensing Vol. 1, No. 4 ( 2009-10-28), p. 818-828
    In: Remote Sensing, MDPI AG, Vol. 1, No. 4 ( 2009-10-28), p. 818-828
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2009
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Vaccines, MDPI AG, Vol. 8, No. 4 ( 2020-10-14), p. 607-
    Abstract: Human respiratory syncytial virus (RSV) is a cause of lower respiratory tract infection in infants, young children, and older adults. There is no licensed vaccine and prophylactic treatment options are limited. The RSV fusion (F) glycoprotein is a target of host immunity and thus a focus for vaccine development. F-trimers are metastable and undergo significant rearrangements from the prefusion to a stable postfusion structure with neutralizing epitopes on intermediate structures. We hypothesize that vaccine strategies that recapitulate the breathable F quaternary structure, and provide accessibility of B-cells to epitopes on intermediate conformations, may collectively contribute to protective immunity, while rigid prefusion F structures restrict access to key protective epitopes. To test this hypothesis, we used the near full-length prefusogenic F as a backbone to construct three prefusion F variants with substitutions in the hydrophobic head cavity: (1) disulfide bond mutant (DS), (2) space filling hydrophobic amino acid substitutions (Cav1), and (3) DS, Cav1 double mutant (DS-Cav1). In this study, we compared the immunogenicity of prefusogenic F to prefusion F variants in two animal models. Native prefusogenic F was significantly more immunogenic, producing high titer antibodies to prefusogenic, prefusion, and postfusion F structures, while animals immunized with DS or DS-Cav1 produced antibodies to prefusion F. Importantly, prefusogenic F elicited antibodies that target neutralizing epitopes including prefusion-specific site zero (Ø) and V and conformation-independent neutralizing sites II and IV. Immunization with DS or DS-Cav1 elicited antibodies primarily to prefusion-specific sites Ø and V with little or no antibodies to other key neutralizing sites. Animals immunized with prefusogenic F also had significantly higher levels of antibodies that cross-neutralized RSV A and B subtypes, while immunization with DS or DS-Cav1 produced antibodies primarily to the A subtype. We conclude that breathable trimeric vaccines that closely mimic the native F-structure, and incorporate strategies for B-cell accessibility to protective epitopes, are important considerations for vaccine design. F structures locked in a single conformation restrict access to neutralizing epitopes that may collectively contribute to destabilizing F-trimers important for broad protection. These results also have implications for vaccine strategies targeting other type 1 integral membrane proteins.
    Type of Medium: Online Resource
    ISSN: 2076-393X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2703319-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Microorganisms, MDPI AG, Vol. 11, No. 2 ( 2023-02-01), p. 368-
    Abstract: Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) show immune evasion of vaccine-derived immunity, highlighting the need for better clinical immunogenicity biomarkers. To address this need, an enzyme-linked immunosorbent assay-based, human angiotensin-converting enzyme 2 (hACE2) binding inhibition assay was developed to measure antibodies against the ancestral strain of SARS-CoV-2 and was validated for precision, specificity, linearity, and other parameters. This assay measures the inhibition of SARS-CoV-2 spike (S) protein binding to the receptor, hACE2, by serum from vaccine clinical trials. Inter- and intra-assay precision, specificity, linearity, lower limit of quantitation, and assay robustness parameters successfully met the acceptance criteria. Heme and lipid matrix effects showed minimal interference on the assay. Samples were stable for testing in the assay even with 8 freeze/thaws and up to 24 months in −80 °C storage. The assay was also adapted for variants (Delta and Omicron BA.1/BA.5), with similar validation results. The hACE2 assay showed significant correlation with anti-recombinant S immunoglobulin G levels and neutralizing antibody titers. This assay provides a rapid, high-throughput option to evaluate vaccine immunogenicity. Along with other clinical biomarkers, it can provide valuable insights into immune evasion and correlates of protection and enable vaccine development against emerging COVID-19 variants.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...