GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 17 ( 2023-08-24), p. 13158-
    Abstract: Glutaric acidemia type 1 (GA1) is a neurotoxic metabolic disorder due to glutaryl-CoA dehydrogenase (GCDH) deficiency. The high number of missense variants associated with the disease and their impact on GCDH activity suggest that disturbed protein conformation can affect the biochemical phenotype. We aimed to elucidate the molecular basis of protein loss of function in GA1 by performing a parallel analysis in a large panel of GCDH missense variants using different biochemical and biophysical methodologies. Thirteen GCDH variants were investigated in regard to protein stability, hydrophobicity, oligomerization, aggregation, and activity. An altered oligomerization, loss of protein stability and solubility, as well as an augmented susceptibility to aggregation were observed. GA1 variants led to a loss of enzymatic activity, particularly when present at the N-terminal domain. The reduced cellular activity was associated with loss of tetramerization. Our results also suggest a correlation between variant sequence location and cellular protein stability (p 〈 0.05), with a more pronounced loss of protein observed with variant proximity to the N-terminus. The broad panel of variant-mediated conformational changes of the GCDH protein supports the classification of GA1 as a protein-misfolding disorder. This work supports research toward new therapeutic strategies that target this molecular disease phenotype.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Viruses, MDPI AG, Vol. 15, No. 7 ( 2023-07-14), p. 1553-
    Abstract: The situation of limited data concerning the response to COVID-19 mRNA vaccinations in immunocom-promised children hinders evidence-based recommendations. This prospective observational study investigated humoral and T cell responses after primary BNT162b2 vaccination in secondary immunocompromised and healthy children aged 5–11 years. Participants were categorized as: children after kidney transplantation (KTx, n = 9), proteinuric glomerulonephritis (GN, n = 4) and healthy children (controls, n = 8). Expression of activation-induced markers and cytokine secretion were determined to quantify the T cell response from PBMCs stimulated with peptide pools covering the spike glycoprotein of SARS-CoV-2 Wuhan Hu-1 and Omicron BA.5. Antibodies against SARS-CoV-2 spike receptor-binding domain were quantified in serum. Seroconversion was detected in 56% of KTx patients and in 100% of the GN patients and controls. Titer levels were significantly higher in GN patients and controls than in KTx patients. In Ktx patients, the humoral response increased after a third immunization. No differences in the frequency of antigen-specific CD4+ and CD8+ T cells between all groups were observed. T cells showed a predominant anti-viral capacity in their secreted cytokines; however, this capacity was reduced in KTx patients. This study provides missing evidence concerning the humoral and T cell response in immunocompromised children after COVID-19 vaccination.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...