GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Diversity, MDPI AG, Vol. 15, No. 6 ( 2023-06-17), p. 784-
    Abstract: Understanding how environmental gradients shape the spatial patterns of intraspecific genetic diversity is a central issue in ecological and evolutionary sciences. In riverine ecosystems, there is generally an increase in neutral genetic diversity downstream, as well as an increase in genetic differentiation among upstream populations. However, selective pressures may vary markedly along the upstream–downstream gradient, which could modify these patterns, but this has rarely been tested empirically. Here, we investigated how environmental gradients in a river network could shape the spatial patterns of intraspecific genetic diversity and differentiation in both neutral SNP markers and functional genetic markers putatively under natural selection (candidate SNPs associated with physiological functions and immune Major Histocompatibility Complex (MHC) loci) in wild brown trout populations. First, we showed that both the distance from the confluence and the centrality on the river network could explain the variation in genetic diversity and differentiation. Second, we found that both neutral and functional markers followed a similar pattern, with a higher genetic diversity and a lower genetic differentiation among populations that were more central and/or near to the confluence. This study highlights the importance of considering both the spatial and hydrological factors of a river network to understand and predict the role of dendritic connectivity in the spatial patterns of genetic diversity and differentiation in wild fish populations.
    Type of Medium: Online Resource
    ISSN: 1424-2818
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518137-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Pathogens, MDPI AG, Vol. 10, No. 3 ( 2021-03-16), p. 349-
    Abstract: Puumala orthohantavirus (PUUV) causes a mild form of haemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE), regularly diagnosed in Europe. France represents the western frontier of the expansion of NE in Europe with two distinct areas: an endemic area (north-eastern France) where PUUV circulates in rodent populations, with the detection of many human NE cases, and a non-endemic area (south-western France) where the virus is not detected, with only a few human cases being reported. In this study, we describe the different stages of the isolation of two PUUV strains from two distinct French geographical areas: Ardennes (endemic area) and Loiret (non-endemic area). To isolate PUUV efficiently, we selected wild bank voles (Myodes glareolus, the specific reservoir of PUUV) captured in these areas and that were seronegative for anti-PUUV IgG (ELISA) but showed a non-negligible viral RNA load in their lung tissue (qRT-PCR). With this study design, we were able to cultivate and maintain these two strains in Vero E6 cells and also propagate both strains in immunologically neutral bank voles efficiently and rapidly. High-throughput and Sanger sequencing results provided a better assessment of the impact of isolation methods on viral diversity.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Pathogens, MDPI AG, Vol. 9, No. 10 ( 2020-09-25), p. 789-
    Abstract: In Europe, Puumala virus (PUUV) is responsible for nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS). Despite the presence of its reservoir, the bank vole, on most of French territory, the geographic distribution of NE cases is heterogeneous and NE endemic and non-endemic areas have been reported. In this study we analyzed whether bank vole-PUUV interactions could partly shape these epidemiological differences. We performed crossed-experimental infections using wild bank voles from French endemic (Ardennes) and non-endemic (Loiret) areas and two French PUUV strains isolated from these areas. The serological response and dynamics of PUUV infection were compared between the four cross-infection combinations. Due to logistical constraints, this study was based on a small number of animals. Based on this experimental design, we saw a stronger serological response and presence of PUUV in excretory organs (bladder) in bank voles infected with the PUUV endemic strain. Moreover, the within-host viral diversity in excretory organs seemed to be higher than in other non-excretory organs for the NE endemic cross-infection but not for the NE non-endemic cross-infection. Despite the small number of rodents included, our results showed that genetically different PUUV strains and in a lesser extent their interaction with sympatric bank voles, could affect virus replication and diversity. This could impact PUUV excretion/transmission between rodents and to humans and in turn at least partly shape NE epidemiology in France.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Insects Vol. 11, No. 5 ( 2020-05-11), p. 294-
    In: Insects, MDPI AG, Vol. 11, No. 5 ( 2020-05-11), p. 294-
    Abstract: Better knowledge of food webs and related ecological processes is fundamental to understanding the functional role of biodiversity in ecosystems. This is particularly true for pest regulation by natural enemies in agroecosystems. However, it is generally difficult to decipher the impact of predators, as they often leave no direct evidence of their activity. Metabarcoding via high-throughput sequencing (HTS) offers new opportunities for unraveling trophic linkages between generalist predators and their prey, and ultimately identifying key ecological drivers of natural pest regulation. Here, this approach proved effective in deciphering the diet composition of key predatory arthropods (nine species.; 27 prey taxa), insectivorous birds (one species, 13 prey taxa) and bats (one species; 103 prey taxa) sampled in a millet-based agroecosystem in Senegal. Such information makes it possible to identify the diet breadth and preferences of predators (e.g., mainly moths for bats), to design a qualitative trophic network, and to identify patterns of intraguild predation across arthropod predators, insectivorous vertebrates and parasitoids. Appropriateness and limitations of the proposed molecular-based approach for assessing the diet of crop pest predators and trophic linkages are discussed.
    Type of Medium: Online Resource
    ISSN: 2075-4450
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662247-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...