GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Marine Drugs, MDPI AG, Vol. 16, No. 8 ( 2018-07-30), p. 255-
    Abstract: Fucoxanthin is a specific carotenoid in brown seaweeds with remarkable biological properties. Ishimozuku (Sphaerotrichia divaricata), an edible brown alga from northern Japan, has morphology that is almost identical to that of Okinawa-mozuku (Cladosiphon okamuranus) harvested off Okinawa, Japan. However, because of Ishimozuku’s lower availability compared to Okinawa-mozuku, the contents of its nutrient compounds remain unclear. The present study analyzed fucoxanthin and anti-oxidant compound contents of Ishimozuku harvested off the northern coast of Japan from 2014 to 2016. First, 80% ethanol extract solutions were prepared from Ishimozuku harvested from several west coast areas of Aomori, Japan. Then, polyphenol content was analyzed using the Folin–Ciocalteu method. Then anti-oxidative effects were analyzed by their 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and hydrogen peroxide scavenging activity. Furthermore, fucoxanthin contents were measured using high performance liquid chromatography (HPLC) analysis. Fucoxanthin contents of Ishimozuku were 105.6–1148.5 μg/g dry weight. Total polyphenol contents of Ishimozuku were of 0.296–0.958 mg/g dry weight: higher than Okinawa-mozuku (0.082 ± 0.011 mg/g dry weight). The anti-oxidation effects of Ishimozuku accompanied the polyphenol content. These results suggest that Ishimozuku contains various anti-oxidant components and has high potential to provide the promotion of human health.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Clinical Medicine, MDPI AG, Vol. 12, No. 12 ( 2023-06-09), p. 3943-
    Abstract: Background: Psoas muscle mass is a recently featured index of sarcopenia, which has a negative prognostic impact in patients with a variety of diseases. We investigated the prognostic impact of baseline psoas muscle mass in patients receiving a trans-catheter aortic valve replacement (TAVR). Methods: Patients who received TAVR at our center between 2015 and 2022 were included. Patients received computer tomography imaging upon admission as an institutional protocol, and psoas muscle mass was measured, which was indexed by body surface area. Patients were followed for four years or until January 2023. The prognostic impact of psoas muscle mass index on 4-year mortality following index discharge was evaluated. Results: A total of 322 patients (85 years, 95 male) were included. Median psoas muscle mass index at baseline was 10.9 (9.0, 13.5) × 10 cm3/m2. A lower psoas muscle mass index tended to be associated with several index of malnutrition and sarcopenia. A psoas muscle mass index was independently associated with 4-year mortality with an adjusted hazard ratio of 0.88 (95% confidence interval 0.79–0.99, p = 0.044). Patients with lower psoas muscle mass index (below the statistically calculated cutoff of 10.7 × 10 cm3/m2, N = 152) had significantly higher cumulative 4-year mortality compared with others (32% versus 13%, p = 0.008). Conclusions: A lower psoas muscle mass index, which is a recently featured objective marker of sarcopenia, was associated with mid-term mortality following TAVR in the elderly cohort with severe aortic stenosis. The measurement of psoas muscle mass index prior to TAVR could have clinical implications for shared decision-making among patients, their relatives, and clinicians.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Clinical Medicine, MDPI AG, Vol. 9, No. 8 ( 2020-08-06), p. 2554-
    Abstract: Malnutrition is associated with sarcopenia, cachexia, and prognosis. We investigated the usefulness of phase angle (PhA) as a marker of sarcopenia, cachexia, and malnutrition in 412 hospitalized patients with cardiovascular disease. We analyzed body composition with bioelectrical impedance analysis, and nutritional status such as controlling nutritional status (CONUT) score. Both skeletal muscle mass index (SMI) and PhA correlated with age, grip strength and knee extension strength (p 〈 0.0001) in both sexes. The SMI value correlated with CONUT score, Hb, and Alb in males. Phase angle also correlated with CONUT score, Hb, and Alb in males, and more strongly associated with these nutritional aspects. In females, PhA was correlated with Hb and Alb (p 〈 0.001). In both sexes, sarcopenia incidence was 31.6% and 32.4%; PhA cut-off in patients with sarcopenia was 4.55° and 4.25°; and cachexia incidence was 11.5% and 14.1%, respectively. The PhA cut-off in males with cachexia was 4.15°. Multivariate regression analysis showed that grip strength and brain natriuretic peptide (BNP) were independent determinants of SMI, whereas grip strength, BNP, and Hb were independent determinants of PhA. Thus, PhA appears to be a useful marker for sarcopenia, malnutrition, and cachexia in hospitalized patients with cardiovascular disease.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecules, MDPI AG, Vol. 25, No. 12 ( 2020-06-23), p. 2883-
    Abstract: Synthetic pyrrole-imidazole (PI) polyamides bind to the minor groove of double-helical DNA with high affinity and specificity, and inhibit the transcription of corresponding genes. In liver cancer, transforming growth factor (TGF)-β expression is correlated with tumor grade, and high-grade liver cancer tissues express epithelial-mesenchymal transition markers. TGF-β1 was reported to be involved in cancer development by transforming precancer cells to cancer stem cells (CSCs). This study aimed to evaluate the effects of TGF-β1-targeting PI polyamide on the growth of liver cancer cells and CSCs and their TGF-β1 expression. We analyzed TGF-β1 expression level after the administration of GB1101, a PI polyamide that targets human TGF-β1 promoter, and examined its effects on cell proliferation, invasiveness, and TGF-β1 mRNA expression level. GB1101 treatment dose-dependently decreased TGF-β1 mRNA levels in HepG2 and HLF cells, and inhibited HepG2 colony formation associated with downregulation of TGF-β1 mRNA. Although GB1101 did not substantially inhibit the proliferation of HepG2 cells compared to untreated control cells, GB1101 significantly suppressed the invasion of HLF cells, which displayed high expression of CD44, a marker for CSCs. Furthermore, GB1101 significantly inhibited HLF cell sphere formation by inhibiting TGF-β1 expression, in addition to suppressing the proliferation of HLE and HLF cells. Taken together, GB1101 reduced TGF-β1 expression in liver cancer cells and suppressed cell invasion; therefore, GB1101 is a novel candidate drug for the treatment of liver cancer.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Clinical Medicine, MDPI AG, Vol. 8, No. 8 ( 2019-08-19), p. 1252-
    Abstract: Blood flow restriction (BFR) has the potential to augment muscle activation, which underlies strengthening and hypertrophic effects of exercise on skeletal muscle. We quantified the effects of BFR on muscle activation in the rectus femoris (RF), the vastus lateralis (VL), and the vastus medialis (VM) in concentric and eccentric contraction phases of low-intensity (10% and 20% of one repetition maximum) leg extension in seven cardiovascular patients who performed leg extension in four conditions: at 10% and 20% intensities with and without BFR. Each condition consisted of three sets of 30 trials with 30 s of rest between sets and 5 min of rest between conditions. Electromyographic activity (EMG) from RF, VL, and VM for 30 repetitions was divided into blocks of 10 trials and averaged for each block in each muscle. At 10% intensity, BFR increased EMG of all muscles across the three blocks in both concentric and eccentric contraction phases. At 20% intensity, EMG activity in response to BFR tended to not to increase further than what it was at 10% intensity. We concluded that very low 10% intensity exercise with BFR may maximize the benefits of BFR on muscle activation and minimize exercise burden on cardiovascular patients.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Clinical Medicine, MDPI AG, Vol. 10, No. 3 ( 2021-02-02), p. 547-
    Abstract: We examined the safety and the effects of low-intensity resistance training (RT) with moderate blood flow restriction (KAATSU RT) on muscle strength and size in patients early after cardiac surgery. Cardiac patients (age 69.6 ± 12.6 years, n = 21, M = 18) were randomly assigned to the control (n = 10) and the KAATSU RT group (n = 11). All patients had received a standard aerobic cardiac rehabilitation program. The KAATSU RT group additionally executed low-intensity leg extension and leg press exercises with moderate blood flow restriction twice a week for 3 months. RT-intensity and volume were increased gradually. We evaluated the anterior mid-thigh thickness (MTH), skeletal muscle mass index (SMI), handgrip strength, knee extensor strength, and walking speed at baseline, 5–7 days after cardiac surgery, and after 3 months. A physician monitored the electrocardiogram, rate of perceived exertion, and the color of the lower limbs during KAATSU RT. Creatine phosphokinase (CPK) and D-dimer were measured at baseline and after 3 months. There were no side effects during KAATSU RT. CPK and D-dimer were normal after 3 months. MTH, SMI, walking speed, and knee extensor strength increased after 3 months with KAATSU RT compared with baseline. Relatively low vs. high physical functioning patients tended to increase physical function more after 3 months with KAATSU RT. Low-intensity KAATSU RT as an adjuvant to standard cardiac rehabilitation can safely increase skeletal muscle strength and size in cardiovascular surgery patients.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...