GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2004
    In:  Mathematical and Computational Applications Vol. 9, No. 1 ( 2004-04-01), p. 101-106
    In: Mathematical and Computational Applications, MDPI AG, Vol. 9, No. 1 ( 2004-04-01), p. 101-106
    Type of Medium: Online Resource
    ISSN: 2297-8747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2004
    detail.hit.zdb_id: 2880856-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Diagnostics, MDPI AG, Vol. 13, No. 12 ( 2023-06-06), p. 1984-
    Abstract: Microbiota composition might play a role in the pathophysiology and course of sepsis, and understanding its dynamics is of clinical interest. Invasive meningococcal disease (IMD) is an important cause of community-acquired serious infection, and there is no information regarding microbiota composition in children with meningococcemia. In this study, we aimed to evaluate the intestinal and nasopharyngeal microbiota composition of children with IMD. Materials and Methods: In this prospective, multi-center study, 10 children with meningococcemia and 10 age-matched healthy controls were included. Nasopharyngeal and fecal samples were obtained at admission to the intensive care unit and on the tenth day of their hospital stay. The V3 and V4 regions of the 16S rRNA gene were amplified following the 16S Metagenomic Sequencing Library Preparation. Results: Regarding the alpha diversity on the day of admission and on the tenth day at the PICU, the Shannon index was significantly lower in the IMD group compared to the control group (p = 0.002 at admission and p = 0.001, on the tenth day of PICU). A statistical difference in the stool samples was found between the IMD group at Day 0 vs. the controls in the results of the Bray–Curtis and Jaccard analyses (p = 0.005 and p = 0.001, respectively). There were differences in the intestinal microbiota composition between the children with IMD at admission and Day 10 and the healthy controls. Regarding the nasopharyngeal microbiota analysis, in the children with IMD at admission, at the genus level, Neisseria was significantly more abundant compared to the healthy children (p 〈 0.001). In the children with IMD at Day 10, genera Moraxella and Neisseria were decreased compared to the healthy children. In the children with IMD on Day 0, for paired samples, Moraxella, Neisseria, and Haemophilus were significantly more abundant compared to the children with IMD at Day 10. In the children with IMD at Day 10, the Moraxella and Neisseria genera were decreased, and 20 different genera were more abundant compared to Day 0. Conclusions: We first found alterations in the intestinal and nasopharyngeal microbiota composition in the children with IMD. The infection itself or the other care interventions also caused changes to the microbiota composition during the follow-up period. Understanding the interaction of microbiota with pathogens, e.g., N. meningitidis, could give us the opportunity to understand the disease’s dynamics.
    Type of Medium: Online Resource
    ISSN: 2075-4418
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662336-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Electronics, MDPI AG, Vol. 9, No. 12 ( 2020-12-12), p. 2127-
    Abstract: Transformer buildings are at the heart of the effective operation of distribution systems, and heating problems of transformers under severe operational conditions are among the main factors affecting the lifetime, efficiency, technical losses, etc., of such important power system assets. It is crucial that the inside temperature of transformer buildings is higher than the outside temperature due to the operation of the transformer and the effect of ambient conditions. This issue may cause several problems such as additional transformer aging, losses, and moisture. The main purpose of this study is to decrease the inside temperature of transformer buildings; in other words, to prevent the inside temperature from being higher than the outside temperature. To realize this, it is recommended to apply a combined heat reduction technique by covering the outer surface with a reflective surface and use a low-emitting material on the inner surface. The relevant results of the practical evidence in this manner are presented in detail at a distribution system in Turkey with different climate and loading conditions in the summertime.
    Type of Medium: Online Resource
    ISSN: 2079-9292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662127-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...