GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (25)
  • 1
    In: Plants, MDPI AG, Vol. 12, No. 10 ( 2023-05-22), p. 2058-
    Abstract: Food-deceptive flowers primarily use visual signals (such as color) to mimic model plants and deceive insects into achieving pollination. Paphiopedilum micranthum is a food-deceptive orchid that has a pink labellum and two purple petals with a yellow base and has been proven to be pollinated by bumblebees. However, the chemical and molecular bases of the floral color are not well understood. We conducted targeted metabolite profiling and transcriptomic analysis to determine the color signal and its genetic basis in P. micranthum. We found that both anthocyanins and carotenoids contribute significantly to the formation of floral color that determines the color signal. Higher concentrations of anthocyanins (cyanidin and peonidin) and carotenoids (primarily lutein and zeaxanthin) were detected in the petal compared to the labellum. The upregulation of structural genes of CHS, F3′H, DFR and ANS on the anthocyanin biosynthesis pathway in petals was identified, as well as three genes of LCYE, BCH, and CCD4 on the carotenoid biosynthesis pathway. Furthermore, we discovered that three R2R3-MYBs and one bHLH transcription factors were co-expressed with the expression of different genes. These genes and transcription factors may be responsible for the spatial color difference of P. micranthum. Our study emphasizes that the color of this food-deceptive orchids is achieved through specific genes and transcription factors associated with the pigment biosynthesis pathway.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Personalized Medicine, MDPI AG, Vol. 12, No. 3 ( 2022-03-02), p. 385-
    Abstract: Expanded non-coding RNA repeats of CCUG are the underlying genetic causes for myotonic dystrophy type 2 (DM2). There is an urgent need for effective medications and potential drug targets that may alleviate the progression of the disease. In this study, 3140 small-molecule drugs from FDA-approved libraries were screened through lethality and locomotion phenotypes using a DM2 Drosophila model expressing 720 CCTG repeats in the muscle. We identified ten effective drugs that improved survival and locomotor activity of DM2 flies, including four that share the same predicted targets in the TGF-β pathway. The pathway comprises two major branches, the Activin and BMP pathways, which play critical and complex roles in skeletal development, maintenance of homeostasis, and regeneration. The Drosophila model recapitulates pathological features of muscle degeneration in DM2, displaying shortened lifespan, a decline in climbing ability, and progressive muscle degeneration. Increased levels of p-smad3 in response to activin signaling were observed in DM2 flies. Decreased levels of activin signaling using additional specific inhibitors or genetic method ameliorated climbing defects, crushed thoraxes, structure, and organization of muscle fibers. Our results demonstrate that a decrease in activin signaling is sufficient to rescue muscle degeneration and is, therefore, a potential therapeutic target for DM2.
    Type of Medium: Online Resource
    ISSN: 2075-4426
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662248-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nanomaterials, MDPI AG, Vol. 13, No. 8 ( 2023-04-18), p. 1399-
    Abstract: Direct absorption of sunlight and conversion into heat by uniformly dispersed photothermal nanofluids has emerged as a facile way to efficiently harness abundant renewable solar-thermal energy for a variety of heating-related applications. As the key component of the direct absorption solar collectors, solar-thermal nanofluids, however, generally suffer from poor dispersion and tend to aggregate, and the aggregation and precipitation tendency becomes even stronger at elevated temperatures. In this review, we overview recent research efforts and progresses in preparing solar-thermal nanofluids that can be stably and homogeneously dispersed under medium temperatures. We provide detailed description on the dispersion challenges and the governing dispersion mechanisms, and introduce representative dispersion strategies that are applicable to ethylene glycol, oil, ionic liquid, and molten salt-based medium-temperature solar-thermal nanofluids. The applicability and advantages of four categories of stabilization strategies including hydrogen bonding, electrostatic stabilization, steric stabilization, and self-dispersion stabilization in improving the dispersion stability of different type of thermal storage fluids are discussed. Among them, recently emerged self-dispersible nanofluids hold the potential for practical medium-temperature direct absorption solar-thermal energy harvesting. In the end, the exciting research opportunities, on-going research need and possible future research directions are also discussed. It is anticipated that the overview of recent progress in improving dispersion stability of medium-temperature solar-thermal nanofluids can not only stimulate exploration of direct absorption solar-thermal energy harvesting applications, but also provide a promising means to solve the fundamental limiting issue for general nanofluid technologies.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Environmental Research and Public Health Vol. 19, No. 15 ( 2022-07-23), p. 8972-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 15 ( 2022-07-23), p. 8972-
    Abstract: Microplastics are widely found in oceans and rivers. In China, the research on microplastic pollution in inland urban fresh waters of China is insufficient. We studied microplastics in the surface waters of urban rivers in Chengdu, which is the largest city in western China. The concentration of microplastics in the analysis environment ranged from 5.00 to 10.5 items/L, and the average quantity was 8.82 items/L. The majority of the microplastics were transparent and took the form of fragments, particles, and fibers. Polyethylene terephthalate (PET) and polyamide (PA) were the dominant polymer types of the microplastics analyzed. Plastic particles ≤ 500 μm accounted for 69.8% of the total. This large proportion of small transparent microplastics in urban rivers in Chengdu is a potential threat to the growth of aquatic organisms and birds foraging from the river and may pose hazards to human health. Additionally, the correlation of microplastic content with population quantity and economic level was calculated by the Pearson coefficient method (p 〈 0.05), and the results showed that both have an important effect on the number of microplastics in rivers. This research provides a reference for understanding the level of microplastics in urban rivers in Chengdu and pollution control.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Materials, MDPI AG, Vol. 8, No. 11 ( 2015-11-06), p. 7498-7510
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2015
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Applied Sciences, MDPI AG, Vol. 13, No. 17 ( 2023-09-01), p. 9902-
    Abstract: China is rich in coal resources under water bodies. However, the safety prediction of high-intensity mining under water bodies has long been one of the problems encountered by the coal industry. It is of great significance to realize safe mining under water bodies, improve the recovery rate of coal resources and protect reservoir resources. Therefore, this article takes the No. 5 coal seam and No. 11 mining area of the Wangwa Coal Mine as the research object, and integrates physical simulation, numerical simulation, theoretical analysis, and other methods to study the development height of water-conducting fracture zones in fully mechanized top coal caving mining. Solid–liquid coupling physical simulation tests reveal the failure characteristics of overlying strata in goaf and the seepage law of reservoir water under the influence of mining. By comparing the monitoring data of borehole leakage, the measured data obtained by borehole monitoring with the height data of the water-conducting fracture zone obtained by the traditional empirical formula of three-under standard, the error between the two is as high as −29.39%. In this case, the variance correction coefficient is used to correct the empirical formula, and on this basis, in order to effectively protect the surface water dam and water body, the mining height of the coal seam in the working face with limited height mining is inversely derived. The research results provide a basis for the safety prediction of high-intensity mining under the reservoir dam in the ecologically fragile areas of western China and a scientific guarantee for the formulation of safety measures under such conditions.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Polymers, MDPI AG, Vol. 14, No. 23 ( 2022-11-25), p. 5135-
    Abstract: Hemin possesses great potential in eliminating organic pollutants due to its mild reaction condition, light-harvesting efficiency, and environmental friendliness. However, it has drawbacks such as being easy to aggregate and hard to recycle, and poor stability should be improved in practical application. Herein, the subject developed an electrospinning approach to enable the hemin particulates to be immobilized onto polyacrylonitrile (PAN) nanofibers stably. Hydrogen peroxide (H2O2) was adopted as an oxidant in the system to simulate the enzymatic catalysis of hemin in an organism. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflection spectroscopy (DRS), and electron spin resonance spectroscopy (ESR) analysis was employed to discuss the morphology, structure, and mechanism of the prepared n-hemin/PAN nanocomposite membranes, and 0.02 mmol L−1 of the rhodamine B (RhB) removal activity in different conditions was also verified with these membranes. The kinetic studies showed that n-hemin/PAN nanocomposite membranes maintained excellent properties both in adsorption and degradation. Around 42% RhB could be adsorbed in the dark, while 91% RhB decolorized under xenon lamp irradiation in 110 min, suggesting the catalytic performance of n-hemin/PAN was greatly driven by light irradiation. Differing from the axial coordinated hemin complexes, n-hemin/PAN would catalyze hydrogen peroxide into •OH radicals rather than •OOH and high-valent metal-oxo species. This work provides an effective way to support hemin as nanocomposite membranes, in which the molecular interaction between polymer and hemin made their light adsorption an obvious red shift.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Sustainability Vol. 13, No. 8 ( 2021-04-20), p. 4579-
    In: Sustainability, MDPI AG, Vol. 13, No. 8 ( 2021-04-20), p. 4579-
    Abstract: In the literature on business model innovation (BMI) in multinational corporations (MNCs), the influence of cross-border R & D (Research and development) sourcing on innovation performance has been widely discussed; however, from a BMI perspective, apart from innovation performance, the innovation quality is also important. In addition, absorptive capacity and institutional distance are important indicators of MNCs’ innovation quality, although there have been few studies of the moderating effects on the relationship between R & D sourcing and innovation quality. Based on this research gap, starting from the perspective of BMI and by constructing a research framework that includes R & D intensity, R & D diversity, and innovation quality, this paper takes China’s high-tech MNCs as the research object to obtain a sustainable innovative business model. Further, absorptive capacity and institutional distance serve as moderating variables to study the moderating role of the relationship between R & D sourcing and the innovation quality of MNCs. This paper presents the following research findings. During the process of cross-border BMI, R & D intensity has a significant, inverted U-shaped relationship with innovation quality; R & D diversity has a significant negative linear relationship with innovation quality; and absorptive capacity and institutional distance each have a moderating effect on the above relationships.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cells, MDPI AG, Vol. 11, No. 9 ( 2022-04-20), p. 1398-
    Abstract: The recovery of lower-urinary-tract activity is a top priority for patients with spinal-cord injury. Historically, locomotor training improved micturition function in both patients with spinal cord injury and animal models. We explore whether training augments such as the supraspinal control of the external urethral sphincter results in enhanced coordination in detrusor-sphincter activity. We implemented a clinically relevant contusive spinal-cord injury at the 12th thoracic level in rats and administered forced wheel running exercise for 11 weeks. Awake rats then underwent bladder cystometrogram and sphincter electromyography recordings to examine the micturition reflex. Subsequently, pseudorabies-virus-encoding red fluorescent protein was injected into the sphincter to trans-synaptically trace the supraspinal innervation of Onuf’s motoneurons. Training in the injury group reduced the occurrence of bladder nonvoiding contractions, decreased the voiding threshold and peak intravesical pressure, and shortened the latency of sphincter bursting during voiding, leading to enhanced voiding efficiency. Histological analysis demonstrated that the training increased the extent of spared spinal-cord tissue around the epicenter of lesions. Compared to the group of injury without exercise, training elicited denser 5-hydroxytryptamine-positive axon terminals in the vicinity of Onuf’s motoneurons in the cord; more pseudorabies virus-labeled or c-fos expressing neurons were detected in the brainstem, suggesting the enhanced supraspinal control of sphincter activity. Thus, locomotor training promotes tissue sparing and axon innervation of spinal motoneurons to improve voiding function following contusive spinal-cord injury.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Biomedicines, MDPI AG, Vol. 11, No. 8 ( 2023-08-04), p. 2196-
    Abstract: To improve the survival of patients with hepatocellular carcinoma (HCC), new biomarkers and therapeutic targets are urgently needed. In this study, the GEO and TCGA dataset were used to explore the differential co-expressed genes and their prognostic correlation between HCC and normal samples. The mRNA levels of these genes were validated by qRT-PCR in 20 paired fresh HCC samples. The results demonstrated that the eight-gene model was effective in predicting the prognosis of HCC patients in the validation cohorts. Based on qRT-PCR results, NOX4 was selected to further explore biological functions within the model and 150 cases of paraffin-embedded HCC tissues were scored for NOX4 immunohistochemical staining. We found that the NOX4 expression was significantly upregulated in HCC and was associated with poor survival. In terms of function, the knockdown of NOX4 markedly inhibited the progression of HCC in vivo and in vitro. Mechanistic studies suggested that NOX4 promotes HCC progression through the activation of the epithelial–mesenchymal transition. In addition, the sensitivity of HCC cells to sorafenib treatment was obviously decreased after NOX4 overexpression. Taken together, this study reveals NOX4 as a potential therapeutic target for HCC and a biomarker for predicting the sorafenib treatment response.
    Type of Medium: Online Resource
    ISSN: 2227-9059
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720867-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...