GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Water, MDPI AG, Vol. 12, No. 10 ( 2020-10-11), p. 2819-
    Abstract: The age of a water particle in a shallow man-made reservoir is defined as the time elapsed since it entered it. Analyzing this diagnostic timescale provides valuable information for optimally sizing and operating such structures. Here, the constituent-oriented age and residence time theory (CART) is used to obtain not only the mean age, but also the water age distribution function at each location. The method is applied to 10 different shallow reservoirs of simple geometry (rectangular), in a steady-state framework. The results show that complex, multimodal water age distributions are found, implying that focusing solely on simple statistics (e.g., mean or median age) fails to reflect the complexity of the actual distribution of water age. The latter relates to the fast or slow pathways that water particles may take for traveling from the inlet to the outlet of the reservoirs.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Water, MDPI AG, Vol. 12, No. 4 ( 2020-04-02), p. 1017-
    Abstract: Water renewal timescales, namely age, residence time, and exposure time, which are defined in accordance with the Constituent-oriented Age and Residence time Theory (CART), are computed by means of the unstructured-mesh, finite element model Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM) in the Mahakam Delta (Borneo Island, Indonesia). Two renewing water types, i.e., water from the upstream boundary of the delta and water from both the upstream and the downstream boundaries, are considered, and their age is calculated as the time elapsed since entering the delta. The residence time of the water originally in the domain (i.e., the time needed to hit an open boundary for the first time) and the exposure time (i.e., the total time spent in the domain of interest) are then computed. Simulations are performed for both low and high flow conditions, revealing that (i) age, residence time, and exposure time are clearly related to the river volumetric flow rate, and (ii) those timescales are of the order of one spring-neap tidal cycle. In the main deltaic channels, the variation of the diagnostic timescales caused by the tide is about 35% of their averaged value. The age of renewing water from the upstream boundary of the delta monotonically increases from the river mouth to the delta front, while the age of renewing water from both the upstream and the downstream boundaries monotonically increases from the river mouth and the delta front to the middle delta. Variations of the residence and the exposure times coincide with the changes of the flow velocity, and these timescales are more sensitive to the change of flow dynamics than the age. The return coefficient, which measures the propensity of water to re-enter the domain of interest after leaving it for the first time, is of about 0.3 in the middle region of the delta.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Water Vol. 13, No. 19 ( 2021-10-08), p. 2796-
    In: Water, MDPI AG, Vol. 13, No. 19 ( 2021-10-08), p. 2796-
    Abstract: The last several decades have seen significant advances in fluid–mechanical, water-quality, and ecological observation systems, as well as in related scientific computing capabilities [...]
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Water, MDPI AG, Vol. 12, No. 10 ( 2020-09-29), p. 2717-
    Abstract: In this article, we describe the use of diagnostic timescales as simple tools for illuminating how aquatic ecosystems work, with a focus on coastal systems such as estuaries, lagoons, tidal rivers, reefs, deltas, gulfs, and continental shelves. Intending this as a tutorial as well as a review, we discuss relevant fundamental concepts (e.g., Lagrangian and Eulerian perspectives and methods, parcels, particles, and tracers), and describe many of the most commonly used diagnostic timescales and definitions. Citing field-based, model-based, and simple algebraic methods, we describe how physical timescales (e.g., residence time, flushing time, age, transit time) and biogeochemical timescales (e.g., for growth, decay, uptake, turnover, or consumption) are estimated and implemented (sometimes together) to illuminate coupled physical-biogeochemical systems. Multiple application examples are then provided to demonstrate how timescales have proven useful in simplifying, understanding, and modeling complex coastal aquatic systems. We discuss timescales from the perspective of “holism”, the degree of process richness incorporated into them, and the value of clarity in defining timescales used and in describing how they were estimated. Our objective is to provide context, new applications and methodological ideas and, for those new to timescale methods, a starting place for implementing them in their own work.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Water Vol. 12, No. 5 ( 2020-04-30), p. 1274-
    In: Water, MDPI AG, Vol. 12, No. 5 ( 2020-04-30), p. 1274-
    Abstract: Age can be evaluated at any time and position to understand transport processes taking place in the aquatic environment, including for reactive tracers. In the framework of the Constituent-oriented Age and Residence time Theory (CART), the age of a constituent or an aggregate of constituents, including the water itself, is usually defined as the time elapsed since leaving the boundary where the age is set or reset to zero. The age is evaluated as the ratio of the age concentration to the concentration, which are the solution of partial differential equations. The boundary conditions for the concentration and age concentration cannot be prescribed independently of each other. Instead, they must be derived from boundary conditions designed beforehand for the age distribution function (the histogram of the ages, the age theory core variable), even when this variable is not calculated explicitly. Consistent boundary conditions are established for insulating, departure and arrival boundaries. Gas exchanges through the water–air interface are also considered. Age fields ensuing from consistent boundary conditions and, occasionally, non-consistent ones are discussed, suggesting that the methodology advocated herein can be utilized by most age calculations, be they used for diagnosing the results of idealised models or realistic ones.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...