GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Infrastructures Vol. 6, No. 2 ( 2021-02-19), p. 30-
    In: Infrastructures, MDPI AG, Vol. 6, No. 2 ( 2021-02-19), p. 30-
    Abstract: The ability to detect early signs of failure in buried pipe infrastructure is necessary to facilitate the continued use of ageing infrastructure for delivery of society’s essential services and move beyond disruptive and expensive reactive maintenance and repair. This paper reports detailed experiments on the use of in-pipe ultrasound techniques for assessment of ground conditions around buried plastic pipes. Two sets of ultrasonic experiment on the soil conditions are presented: (1) existence, shape, and dimension of void, and (2) water content in the soil. The ultrasound technique is shown to be capable for detecting water filled voids and assessing the soil support, critical early indicators of failure. The technique requires water as the transmission media hence is naturally suited to application in operational water distribution systems. The work represents an important advance in in-pipe condition assessment of plastic pipes, demonstrates the practical capability of the ultrasound technique, which is critical for progression towards proactive maintenance, offering cost and service improvements.
    Type of Medium: Online Resource
    ISSN: 2412-3811
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2922347-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nanomaterials, MDPI AG, Vol. 10, No. 8 ( 2020-08-11), p. 1576-
    Abstract: The ability to develop ferroelectric materials using binary oxides is critical to enable novel low-power, high-density non-volatile memory and fast switching logic. The discovery of ferroelectricity in hafnia-based thin films, has focused the hopes of the community on this class of materials to overcome the existing problems of perovskite-based integrated ferroelectrics. However, both the control of ferroelectricity in doped-HfO2 and the direct characterization at the nanoscale of ferroelectric phenomena, are increasingly difficult to achieve. The main limitations are imposed by the inherent intertwining of ferroelectric and dielectric properties, the role of strain, interfaces and electric field-mediated phase, and polarization changes. In this work, using Si-doped HfO2 as a material system, we performed a correlative study with four scanning probe techniques for the local sensing of intrinsic ferroelectricity on the oxide surface. Putting each technique in perspective, we demonstrated that different origins of spatially resolved contrast can be obtained, thus highlighting possible crosstalk not originated by a genuine ferroelectric response. By leveraging the strength of each method, we showed how intrinsic processes in ultrathin dielectrics, i.e., electronic leakage, existence and generation of energy states, charge trapping (de-trapping) phenomena, and electrochemical effects, can influence the sensed response. We then proceeded to initiate hysteresis loops by means of tip-induced spectroscopic cycling (i.e., “wake-up”), thus observing the onset of oxide degradation processes associated with this step. Finally, direct piezoelectric effects were studied using the high pressure resulting from the probe’s confinement, noticing the absence of a net time-invariant piezo-generated charge. Our results are critical in providing a general framework of interpretation for multiple nanoscale processes impacting ferroelectricity in doped-hafnia and strategies for sensing it.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmosphere, MDPI AG, Vol. 13, No. 9 ( 2022-08-25), p. 1358-
    Abstract: A variety of methods have been used to study atmospheric bioaerosols. A common technique employed for the detection and measurement of bioaerosols is the measurement of the autofluorescence of biological particles when excited by ultraviolet light. We examined the changes in the fluorescence spectra of bioaerosols when exposed to ambient outdoor conditions for periods of several hours. The bioaerosols in this study were contained in a Captive Aerosol Growth and Evolution (CAGE) chamber that employed two rotating drums constructed with an exterior FEP Teflon film to allow sunlight to penetrate and an inner ePTFE membrane to allow ambient trace gasses to permeate the drums. The bioaerosols were periodically measured with a TSI UV-APS (excited at 355 nm) and a single-particle fluorescence spectrometer (excited at 351 and 263 nm). The data indicate changes in both fluorescence spectral profile and intensity from Bacillus thuringiensis var. kurstaki spores and MS2 bacteriophage particles during the experiments. The changes observed in these particles appear to be due to a combination of the environmental conditions rather than attributable to any single factor. The results of this study indicate that bioaerosols are significantly altered by atmospheric aging processes and that these changes may affect measurements by ultra-violet light induced fluorescence (UV-LIF) or other spectroscopic techniques.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...