GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Genes, MDPI AG, Vol. 14, No. 9 ( 2023-08-27), p. 1706-
    Abstract: The Yorkshire pigs, renowned for their remarkable growth rate, low feed conversion ratio (FCR), and high meat production, emerge as a novel preference for paternal breeding. In this study, we found that purebred paternal Yorkshire pigs (PY) surpass the purebred Duroc breed in terms of growth rate. Specifically, purebred PY attain a weight of 100 kg at an earlier age compared to purebred Duroc (Male, 145.07 vs. 162.91; Female, 145.91 vs. 167.57; p-value 〈 0.01). Furthermore, different hybrid combinations suggest that offspring involving purebred PY exhibit superior growth performance. Compared with purebred Duroc, the offspring of purebred PY have an earlier age in days (173.23 vs. 183.54; p-value 〈 0.05) at the same slaughter weight. The changes of plasma metabolites of 60-day-old purebred boars in the two sire-breeds showed that 1335 metabolites in plasma were detected. Compared with Duroc, 28 metabolites were down-regulated and 49 metabolites were up-regulated in PY. Principal component analysis (PCA) discerned notable dissimilarities in plasma metabolites between the two sire-breeds of pigs. The levels of glycerol 3-phosphate choline, cytidine, guanine, and arachidonic acid increased significantly (p-value 〈 0.05), exerting an impact on their growth and development. According to our results, PY could be a new paternal option as a terminal sire in three-way cross system.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 1 ( 2022-01-01), p. 477-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 1 ( 2022-01-01), p. 477-
    Abstract: Aluminum (Al) toxicity is the main factor limiting plant growth and the yield of cereal crops in acidic soils. Al-induced oxidative stress could lead to the excessive accumulation of reactive oxygen species (ROS) and aldehydes in plants. Aldehyde dehydrogenase (ALDH) genes, which play an important role in detoxification of aldehydes when exposed to abiotic stress, have been identified in most species. However, little is known about the function of this gene family in the response to Al stress. Here, we identified an ALDH gene in maize, ZmALDH, involved in protection against Al-induced oxidative stress. Al stress up-regulated ZmALDH expression in both the roots and leaves. The expression of ZmALDH only responded to Al toxicity but not to other stresses including low pH and other metals. The heterologous overexpression of ZmALDH in Arabidopsis increased Al tolerance by promoting the ascorbate-glutathione cycle, increasing the transcript levels of antioxidant enzyme genes as well as the activities of their products, reducing MDA, and increasing free proline synthesis. The overexpression of ZmALDH also reduced Al accumulation in roots. Taken together, these findings suggest that ZmALDH participates in Al-induced oxidative stress and Al accumulation in roots, conferring Al tolerance in transgenic Arabidopsis.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Sustainability, MDPI AG, Vol. 15, No. 17 ( 2023-08-29), p. 13043-
    Abstract: As particulate organic carbon (POC) from lakes plays an important role in lake ecosystem sustainability and carbon cycle, the estimation of its concentration using satellite remote sensing is of great interest. However, the high complexity and variability of lake water composition pose major challenges to the estimation algorithm of POC concentration in Class II water. This study aimed to formulate a machine-learning algorithm to predict POC concentration and compare their modeling performance. A Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM) algorithm based on spectral and time sequences was proposed to construct an estimation model using the Sentinel 2 satellite images and water surface sample data of Chaohu Lake in China. As a comparison, the performances of the Backpropagation Neural Network (BP), Generalized Regression Neural Network (GRNN), and Convolutional Neural Network (CNN) models were evaluated for remote sensing inversion of POC concentration. The results show that the CNN–LSTM model obtained higher prediction precision than the BP, GRNN, and CNN models, with a coefficient of determination (R2) of 0.88, a root mean square error (RMSE) of 3.66, and residual prediction deviation (RPD) of 3.03, which are 6.02%, 22.13%, and 28.4% better than the CNN model, respectively. This indicates that CNN–LSTM effectively combines spatial and temporal information, quickly captures time-series features, strengthens the learning ability of multi-scale features, is conducive to improving estimation precision of remote sensing models, and offers good support for carbon source monitoring and assessment in lakes.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Polymers, MDPI AG, Vol. 14, No. 17 ( 2022-08-27), p. 3523-
    Abstract: To provide a safe and effective supplement of the essential trace element selenium, we focused on the biosynthesis of nanoselenium (SeNPs) via probiotics. A novel kind of exopolymer-functionalized nanoselenium (SeEPS), whose average size was 67.0 ± 0.6 nm, was produced by Bacillus subtilis SR41, whereas the control consisted of exopolymers without selenium (EPS). Chemical composition analysis, Fourier transform infrared (FTIR) spectroscopy and high-performance liquid chromatography (HPLC) confirmed that SeEPS and EPS shared similar polysaccharide characteristic groups, such as COO- and C=O, and contained not only 45.2–45.4% of sugars but also 23.5–24.7% of proteins and some lipids. Both SeEPS and EPS were primarily composed of mannose, amino glucose, ribose, glucose and galactose. Furthermore, to identify the biologically active component of SeEPS, three kinds of selenium particles with different stabilizers [Se(0), bovine serum albumin-Se and EPS-Se] were synthesized chemically, and their ability to scavenge free radicals in vitro was compared with that of SeEPS and EPS. The results revealed that EPS itself exhibited weak superoxide and hydroxyl radical scavenging abilities. Nevertheless, SeEPS had superior antioxidant properties compared to all other products, possibly due to the specific structure of SeNPs and exopolymers. Our results suggested that exopolymer-functionalized SeNPs with specific monosaccharide composition and structure could eventually find a potential application as an antioxidant.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Polymers, MDPI AG, Vol. 12, No. 7 ( 2020-07-21), p. 1615-
    Abstract: Based on mechanical properties of Polyamide 66 (PA66) under complex loading conditions, a Drucker–Prager yield criterion was employed to characterize its yield behavior. Then, a one-dimensional model, which contains a viscoelastic regime and a viscoplastic regime, was introduced and converted into a three-dimensional constitutive model. The three-dimensional model was implemented into a LS-DYNA software, which was used to predict the dynamic response of PA66 under Taylor impact conditions, whose corresponding tests were conducted by gas gun and recorded by high-speed camera. By contrasting the simulation results and these of the corresponding tests, the deformed shapes including the residual length, the maximum diameter and the shape of the mushroom head of the PA66 bars were found to be similar to these obtained from the tests, which verified the accuracy of the three-dimensional constitutive model, and proved that the model was able to be applied to high-rate impact loading conditions.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Applied Sciences, MDPI AG, Vol. 13, No. 16 ( 2023-08-16), p. 9321-
    Abstract: Soil reflectance spectra and hyperspectral images have great potential to monitor and evaluate soil texture in large-scale scenarios. In hilly areas, sand, clay, and silt have similar spectral characteristics in visible, near-infrared, and short-wave infrared (VNIR-SWIR) reflection spectra. Soil texture spectra belong to mixed spectra despite some differences in particle size, mineral composition, and water content, making their distinction difficult. The accurate identification of the content within different particle sizes is difficult as it involves capturing spectral reflection features. Therefore, this study aimed to predict soil texture content through machine learning and unmixing the soil texture’s spectra while also comparing their respective modelling performances. Taking typical cultivated land in the Jianghuai hills as an example, the GaoFen-5 Advanced Hyperspectral Imaging (GF-5 AHSI) laboratory spectra of soil samples were used to predict sand, silt, and clay particle contents using partial least squares regression (PLSR) and convolutional neural networks (CNNs). The entire spectra of VNIR-SWIR regions were smoothed, and the dimensions were reduced via principal component analysis (PCA). The prediction models of sand, silt, and clay particle content were constructed, and inversion maps were generated using AHSI. The results showed that the PCA-CNN model achieved a higher prediction precision than the PCA-PLSR in both ASD and GF-5 data. Clay content exhibited the highest predictive performance with a coefficient of determination (R2) of 0.948 and 0.908 and a root mean square error (RMSE) of 26.51 g/kg and 31.24 g/kg, respectively, which represented a 39.0% and 79.8% increase in R2 and a 57% and 57.1% decrease in RMSE compared to that of the PCA-PLSR. This method indicates that the PCA-CNN model can effectively achieve nonlinear interactions between multiple spectral components and better model and fit spectral mixing processes; moreover, it provides an alternative method for investigating the spatial distribution of soil texture.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Crystals Vol. 12, No. 2 ( 2022-02-18), p. 284-
    In: Crystals, MDPI AG, Vol. 12, No. 2 ( 2022-02-18), p. 284-
    Abstract: A tungsten fiber/Zr-based bulk metallic glass matrix composite (Wf/Zr-MG) is a potential penetrator material. To compare and analyze the penetration behavior of Wf/Zr-MG and a tungsten heavy alloy (WHA), a penetration experiment into the 30CrMnMo homogeneous armor target plate (RHA) is conducted in the present paper, by using a 37 mm smooth bore artillery with an impact velocity of 1550 ± 40 m/s. Unlike the penetrator made of WHA, the self-sharpening phenomenon was observed in the nose of the Wf/Zr-MG rod. The experimental results indicate that the penetration ability of Wf/Zr-MG rod is approximately 10% higher than that of the WHA rod when the impact velocity is 1550 ± 40 m/s. The combined findings on the microscopic morphology, composition, hardness distribution around the crater, and the macroscopic structure of the penetrator residual show that under this impact velocity, the Wf/Zr-MG material shows amorphous gasification. The Wfs outside the rod shows bending and backflow, resulting in the maintenance of the self-sharpening nose of the penetrator during the penetration process. Moreover, the hardness peak around the crater formed by the Wf/Zr-MG rod is lower, and the penetration crater is straighter, indicating that the Wf/Zr-MG rod has a stronger slag removal ability, lower penetration resistance, and higher penetration efficiency. It is an ideal penetrator material.
    Type of Medium: Online Resource
    ISSN: 2073-4352
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661516-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nanomaterials, MDPI AG, Vol. 12, No. 7 ( 2022-04-01), p. 1181-
    Abstract: Graphene-based nanocomposite films (NCFs) are in high demand due to their superior photoelectric and thermal properties, but their stability and mechanical properties form a bottleneck. Herein, a facile approach was used to prepare nacre-mimetic NCFs through the non-covalent self-assembly of graphene oxide (GO) and biocompatible proteins. Various characterization techniques were employed to characterize the as-prepared NCFs and to track the interactions between GO and proteins. The conformational changes of various proteins induced by GO determined the film-forming ability of NCFs, and the binding of bull serum albumin (BSA)/hemoglobin (HB) on GO’s surface was beneficial for improving the stability of as-prepared NCFs. Compared with the GO film without any additive, the indentation hardness and equivalent elastic modulus could be improved by 50.0% and 68.6% for GO–BSA NCF; and 100% and 87.5% for GO–HB NCF. Our strategy should be facile and effective for fabricating well-designed bio-nanocomposites for universal functional applications.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Minerals, MDPI AG, Vol. 12, No. 11 ( 2022-11-17), p. 1451-
    Abstract: The verification efficiency and precision of copper ore grade has a great influence on copper ore mining. At present, the common method for the exploration of reserves often uses chemical analysis and identification, which have high costs, long cycles, and pollution risks but cannot realize the in situ determination of the copper grade. The existing scalar spectrometric techniques generally have limited accuracy. As a vector spectrum, polarization state information is sensitive to mineral particle distribution and composition, which is conducive to high-precision detection. Taking the visible-near infrared parallel polarization reflectance spectrum data and grade data of a copper mine in Xiaoyuan village, Huaining County, Anhui Province, China, as an example, the characteristics of the parallel polarization spectra of the copper mine were analyzed. The spectra were pretreated by first-order derivative transform and wavelet denoising, and the dimensions of wavelet denoising spectra, parallel polarization spectra, and first-order derivative spectra were also reduced by principal component analysis (PCA). Three, four, and eight principal components of the three types of spectra were selected as variables. Four machine learning models, the radial basis function (RBF), support vector machine (SVM), generalized regression neural network (GRNN), and partial least squares regression (PLSR), were selected to establish the PCA parallel polarization reflectance spectrum and copper grade prediction model. The accuracy of the model was evaluated by the determination coefficient (R2) and root mean square error (RMSE). The results show that, for parallel polarization spectra, first-order derivative spectra, and wavelet denoising spectra, the PCA-SVM model has better results, with R2 values of 0.911, 0.942, and 0.953 and RMSE values of 0.022, 0.019, and 0.017, respectively. This method can effectively reduce the redundancy of polarized hyperspectral data, has better model prediction ability, and provides a useful exploration for the grade analysis of hydrothermal copper deposits at meso-low temperatures.
    Type of Medium: Online Resource
    ISSN: 2075-163X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2655947-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Sensors Vol. 23, No. 11 ( 2023-05-26), p. 5090-
    In: Sensors, MDPI AG, Vol. 23, No. 11 ( 2023-05-26), p. 5090-
    Abstract: The application of IoT (Internet of Things) technology to the health monitoring of expansion joints is of great importance in enhancing the efficiency of bridge expansion joint maintenance. In this study, a low-power, high-efficiency, end-to-cloud coordinated monitoring system analyzes acoustic signals to identify faults in bridge expansion joints. To address the issue of scarce authentic data related to bridge expansion joint failures, an expansion joint damage simulation data collection platform is established for well-annotated datasets. Based on this, a progressive two-level classifier mechanism is proposed, combining template matching based on AMPD (Automatic Peak Detection) and deep learning algorithms based on VMD (Variational Mode Decomposition), denoising, and utilizing edge and cloud computing power efficiently. The simulation-based datasets were used to test the two-level algorithm, with the first-level edge-end template matching algorithm achieving fault detection rates of 93.3% and the second-level cloud-based deep learning algorithm achieving classification accuracy of 98.4%. The proposed system in this paper has demonstrated efficient performance in monitoring the health of expansion joints, according to the aforementioned results.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...