GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (31)
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 23 ( 2022-11-27), p. 14850-
    Abstract: Candidate peptides with novel angiotensin-I-converting enzyme (ACE) inhibitor activity were obtained from hydrolysates of Gracilariopsis lemaneiformis by virtual screening method. Our results showed that G. lemaneiformis peptides (GLP) could significantly lower blood pressure in spontaneously hypertensive rats (SHR). At least 101 peptide sequences of GLP were identified by LC-MS/MS analysis and subjected to virtual screening. A total of 20 peptides with the highest docking score were selected and chemically synthesized in order to verify their ACE-inhibitory activities. Among them, SFYYGK, RLVPVPY, and YIGNNPAKG showed good effects with IC50 values of 6.45 ± 0.22, 9.18 ± 0.42, and 11.23 ± 0.23 µmoL/L, respectively. Molecular docking studies revealed that three peptides interacted with the active center of ACE by hydrogen bonding, hydrophobic interactions, and electrostatic forces. These peptides could form stable complexes with ACE. Furthermore, SFYYGK, RLVPVPY, and YIGNNPAKG significantly reduced systolic blood pressure (SBP) in SHR. YIGNNPAKG exhibited the highest antihypertensive effect, with the largest decrease in SBP (approximately 23 mmHg). In conclusion, SFYYGK, RLVPVPY, and YIGNNPAKG can function as potent therapeutic candidates for hypertension treatment.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Marine Drugs, MDPI AG, Vol. 21, No. 10 ( 2023-09-29), p. 522-
    Abstract: An affinity chromatography filler of CNBr-activated Sepharose 4B-immobilized ACE was used to purify ACE-inhibitory peptides from Takifugu flavidus protein hydrolysate ( 〈 1 kDa). Twenty-four peptides with an average local confidence score (ALC) ≥ 80% from bounded components (eluted by 1 M NaCl) were identified by LC-MS/MS. Among them, a novel peptide, TLRFALHGME, with ACE-inhibitory activity (IC50 = 93.5 µmol·L−1) was selected. Molecular docking revealed that TLRFALHGME may interact with the active site of ACE through H-bond, hydrophobic, and electrostatic interactions. The total binding energy (ΔGbinding) of TLRFALHGME was estimated to be −82.7382 kJ·mol−1 by MD simulations, indicating the favorable binding of peptides with ACE. Furthermore, the binding affinity of TLRFALHGME to ACE was determined by surface plasmon resonance (SPR) with a Kd of 80.9 µmol, indicating that there was a direct molecular interaction between them. TLRFALHGME has great potential for the treatment of hypertension.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Marine Drugs, MDPI AG, Vol. 19, No. 12 ( 2021-11-23), p. 651-
    Abstract: Alcalase, neutral protease, and pepsin were used to hydrolyze the skin of Takifugu flavidus. The T. flavidus hydrolysates (TFHs) with the maximum degree of hydrolysis (DH) and angiotensin-I-converting enzyme (ACE)-inhibitory activity were selected and then ultra-filtered to obtain fractions with components of different molecular weights (MWs) ( 〈 1, 1–3, 3–10, 10–50, and 〉 50 kDa). The components with MWs 〈 1 kDa showed the strongest ACE-inhibitory activity with a half-maximal inhibitory concentration (IC50) of 0.58 mg/mL. Purification and identification using semi-preparative liquid chromatography, Sephadex G-15 gel chromatography, RP-HPLC, and LC–MS/MS yielded one new potential ACE-inhibitory peptide, PPLLFAAL (non-competitive suppression mode; IC50 of 28 μmmol·L−1). Molecular docking and molecular dynamics simulations indicated that the peptides should bind well to ACE and interact with amino acid residues and the zinc ion at the ACE active site. Furthermore, a short-term assay of antihypertensive activity in spontaneously hypertensive rats (SHRs) revealed that PPLLFAAL could significantly decrease the systolic blood pressure (SBP) and diastolic blood pressure (DBP) of SHRs after intravenous administration. These results suggested that PPLLFAAL may have potential applications in functional foods or pharmaceuticals as an antihypertensive agent.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Crystals, MDPI AG, Vol. 12, No. 7 ( 2022-07-01), p. 934-
    Abstract: The hot tensile deformation and fracture mechanisms of a Ti-5Al-5Mo-5V-1Cr-1Fe alloy with bimodal and lamellar microstructures were investigated by in situ tensile tests under scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The results show that the main slip deformation modes are prismatic slip ({11¯00} 〈 112¯0 〉 ) and pyramidal slip ({11¯01} 〈 112¯0 〉 ) under tension at 350 °C. In the bimodal microstructure, several parallel slip bands (SBs) first form within the primary α (αP) phase. As the strain increases, the number of SBs in the αP phase increases significantly and multislip systems are activated to help further coordinate the increasing deformation. Consequently, the microcracks nucleate and generally propagate along the SBs in the αP phase. The direction of propagation of the cracks deflects significantly when it crosses the αP/β interface, resulting in a tortuous crack path. In the lamellar microstructure, many dislocations pile up at the coarse-lath α (αL) phase near the grain boundaries (GBs) due to the strong fencing effect thereof. As a result, SBs develop first; then, microcracks nucleate at the αL phase boundary. During propagation, the cracks tend to propagate along the GB and thus lead to the intergranular fracture of the lamellar microstructure.
    Type of Medium: Online Resource
    ISSN: 2073-4352
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661516-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Photonics, MDPI AG, Vol. 9, No. 3 ( 2022-03-03), p. 149-
    Abstract: Holographic optical storage has great potential for enormous data storage, although the recording medium can cause dimensional change, which can deteriorate the quality of the reconstructed hologram. Compensation in traditional off-axial holographic storage systems is sensitive to vibration and requires high precision. In contrast, a collinear system is more compact with better stability, and its compensation would be different. In this paper, the combination compensation method for compensating for the dimensional change of the recording medium by simultaneously adjusting the reading light wavelength and the focal length of the objective lens is established, which was implemented in a collinear system for a high dimension-change-rate (σ) of the medium condition. Its compensation effects for the lateral dimension change and the vertical dimension change were compared as well. The results show that the bit error ratio of the reconstructed hologram could be decreased to 0 for both of the dimensional change conditions with a large adjustment scope under σ = 1.5%. Compared with the compensation method, in which only the focal length or the wavelength are adjusted, this combination compensation method can enlarge the compensation scope and improve the tolerance of the recording medium shrinkage in a collinear holographic storage system.
    Type of Medium: Online Resource
    ISSN: 2304-6732
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2770002-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Metals, MDPI AG, Vol. 9, No. 5 ( 2019-05-07), p. 524-
    Abstract: The effects of the Cu content on the microstructure and strengthening mechanisms of the Al-Mg-Si-xCu alloys were systematically investigated using scanning electron microscopy (SEM), electron probe microanalysis (EPMA), transmission electron microscopy (TEM), and mechanical tensile tests. The results show that, the strengthening mechanisms change with the Cu content. For as-quenched alloys, solution strengthening (σSS) is predominant when the Cu content ≥2.5 wt.%, and of equivalent importance as grain size strengthening (σH-P) when the Cu content ≤1.0 wt.%. With respect to peak-aged alloys, precipitation strengthening (σppt) is predominant when the Cu content ≥2.5 wt.%, but σSS becomes predominant when the Cu content is 4.5 wt.%. As the Cu content increases from 0.5 to 4.5 wt.%, the main type of precipitates in alloy tends to change from a β″ phase to Q′ phase, and then to a θ′ phase. Among the three types of precipitates, θ′-precipitate causes the largest increase in yield strength (σ0.2) and the largest decrease rate in elongation. β″-precipitate leads to the smallest increase in σ0.2 and the smallest decrease rate in elongation. The increase of Cu content reduces Si solubility in the Al matrix and thus decreases the nucleation rate of β″ phase during subsequent aging.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662252-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Genes, MDPI AG, Vol. 13, No. 6 ( 2022-06-10), p. 1041-
    Abstract: Flower size, a primary agronomic trait in breeding of ornamental plants, is largely determined by petal expansion. Generally, ethylene acts as an inhibitor of petal expansion, but its effect is restricted by unknown developmental cues. In this study, we found that the critical node of ethylene-inhibited petal expansion is between stages 1 and 2 of rose flower opening. To uncover the underlying regulatory mechanism, we carried out a comparative RNA-seq analysis. Differentially expressed genes (DEGs) involved in auxin-signaling pathways were enriched. Therefore, we identified an auxin/indole-3-acetic acid (Aux/IAA) family gene, RhIAA14, whose expression was development-specifically repressed by ethylene. The silencing of RhIAA14 reduced cell expansion, resulting in diminished petal expansion and flower size. In addition, the expressions of cell-expansion-related genes, including RhXTH6, RhCesA2, RhPIP2;1, and RhEXPA8, were significantly downregulated following RhIAA14 silencing. Our results reveal an Aux/IAA that serves as a key player in orchestrating petal expansion and ultimately contributes to flower size, which provides new insights into ethylene-modulated flower opening and the function of the Aux/IAA transcription regulator.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Materials, MDPI AG, Vol. 14, No. 19 ( 2021-10-03), p. 5794-
    Abstract: The plastic deformation processes and fracture behavior of a Ti–5Al–5Mo–5V–1Cr–1Fe alloy with bimodal and lamellar microstructures were studied by room-temperature tensile tests with in situ scanning electron microscopy (SEM) observations. The results indicate that a bimodal microstructure has a lower strength but higher ductility than a lamellar microstructure. For the bimodal microstructure, parallel, deep slip bands (SBs) are first noticed in the primary α (αp) phase lying at an angle of about 45° to the direction of the applied tension, while they are first observed in the coarse lath α (αL) phase or its interface at grain boundaries (GBs) for the lamellar microstructure. The β matrix undergoes larger plastic deformation than the αL phase in the bimodal microstructure before fracture. Microcracks are prone to nucleate at the αp/β interface and interconnect, finally causing the fracture of the bimodal microstructure. The plastic deformation is mainly restricted to within the coarse αL phase at GBs, which promotes the formation of microcracks and the intergranular fracture of the lamellar microstructure.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Environmental Research and Public Health Vol. 19, No. 20 ( 2022-10-21), p. 13699-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 20 ( 2022-10-21), p. 13699-
    Abstract: The COVID-19 pandemic may constitute an “obesogenic lifestyle” that results in exacerbating childhood obesity. However, studies investigating regional sociodemographic factors including different age groups or sexes in children with obesity are lacking. We aimed to clarify the high obesity prevalence populations of preschool children to provide a regional basis for children’s health policy during the COVID-19 school closures. From May to September 2019, a total of 29,518 preschool children were included in a large sample, multicenter cross-sectional study to explore physical status in Fujian Province by stratified cluster random sampling. In October 2019 and October 2020, we also conducted a cross-sectional study exploring physical development including changes in height, weight, and BMI of 1688 preschool children in Fuzhou before and after the COVID-19 school closures. Student’ s t-test, Mann–Whitney U test, or chi-square test was used to assess differences in physical development and overweight and obesity rates among preschool children before and after school closures. For regional factors, the weight of urban preschool children of all ages became higher after the outbreak (p (age 3–4) = 0.009; p (age 4–5) 〈 0.001; p (age 5–6) = 0.002). For sex factors, overweight and obesity in boys had a greater prevalence than in girls before and after the outbreak. In four age groups, overweight and obesity rates in the 5-year-old group (15.5% and 9.9%) were higher than before (11.4% and 6.0%). The weight and BMI of 4- to 5-year-old children also increased faster than before (p 〈 0.001). The COVID-19 pandemic has promoted the epidemic of childhood obesity. Living in urban/coastal (economically developed) areas, boys, and aged 4–6 years old may be a susceptible population to obesity development after the outbreak.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Materials, MDPI AG, Vol. 10, No. 4 ( 2017-04-20), p. 431-
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...