GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Diagnostics, MDPI AG, Vol. 10, No. 7 ( 2020-07-10), p. 469-
    Kurzfassung: The relationship between left ventricular ejection fraction (LVEF) and cardiovascular (CV) outcome is documented in patients with low LVEF. Ventilatory inefficiency is an important prognostic predictor. We hypothesized that the presence of ventilatory inefficiency influences the prognostic predictability of LVEF in heart failure (HF) outpatients. In total, 169 HF outpatients underwent the cardiopulmonary exercise test (CPET) and were followed up for a median of 9.25 years. Subjects were divided into five groups of similar size according to baseline LVEF (≤39%, 40–58%, 59–68%, 69–74%, and ≥75%). The primary endpoints were CV mortality and first HF hospitalization. The Cox proportional hazard model was used for simple and multiple regression analyses to evaluate the interrelationship between LVEF and ventilatory inefficiency (ventilatory equivalent for carbon dioxide (VE/VCO2) at anaerobic threshold (AT) 〉 34.3, optimized cut-point). Only LVEF and VE/VCO2 at AT were significant predictors of major CV events. The lower LVEF subgroup (LVEF ≤ 39%) was associated with an increased risk of CV events, relative to the LVEF ≥75% subgroup, except for patients with ventilatory inefficiency (p = 0.400). In conclusion, ventilatory inefficiency influenced the prognostic predictability of LVEF in reduced LVEF outpatients. Ventilatory inefficiency can be used as a therapeutic target in HF management.
    Materialart: Online-Ressource
    ISSN: 2075-4418
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2662336-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Journal of Personalized Medicine, MDPI AG, Vol. 12, No. 5 ( 2022-04-22), p. 675-
    Kurzfassung: The aim of this study was to investigate the association between mobility status and cardiovascular rehospitalizations in patients with heart failure undergoing cardiac rehabilitation. This retrospective cohort study included patients with heart failure undergoing cardiac rehabilitation. Mobility status was evaluated using functional ambulation categories (FAC), and each cardiovascular hospitalization was recorded by the case manager. A Poisson regression model was used to analyze the association between mobility status and cardiovascular rehospitalizations. This study included 154 patients with heart failure undergoing cardiac rehabilitation. For cardiovascular rehospitalizations within 6 months, the Poisson regression model reported that the impaired mobility group had a higher risk than the fair mobility group (incidence rate ratio (IRR) = 2.38, 95% CI 1.27–4.46, p = 0.007). For cardiovascular rehospitalizations within 12 months, the Poisson regression model also reported that the impaired mobility group had a higher risk than the fair mobility group (IRR = 1.91, 95% CI 1.16–3.13, p = 0.010). Other covariates, such as LVEF, peak oxygen consumption, and PAOD, could have impacted the risk of cardiovascular rehospitalizations. Among patients with heart failure undergoing cardiac rehabilitation, the impaired mobility group had a twofold risk of cardiovascular rehospitalizations, compared with the fair mobility group within both 6 and 12 months.
    Materialart: Online-Ressource
    ISSN: 2075-4426
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2662248-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Cells, MDPI AG, Vol. 8, No. 6 ( 2019-06-14), p. 589-
    Kurzfassung: Hyperglycaemia causes endothelial dysfunction, which is the initial process in the development of diabetic vascular complications. Upon injury, endothelial cells undergo an endothelial-to-mesenchymal transition (EndMT), lose their specific marker, and gain mesenchymal phenotypes. This study investigated the effect of liraglutide, a glucagon-like peptide 1 (GLP-1) receptor agonist, on EndMT inhibition and neointima formation in diabetic mice induced by streptozotocin. The diabetic mice with a wire-induced vascular injury in the right carotid artery were treated with or without liraglutide for four weeks. The degree of neointima formation and re-endothelialisation was evaluated by histological assessments. Endothelial fate tracing revealed that endothelium-derived cells contribute to neointima formation through EndMT in vivo. In the diabetic mouse model, liraglutide attenuated wire injury-induced neointima formation and accelerated re-endothelialisation. In vitro, a high glucose condition (30 mmol/L) triggered morphological changes and mesenchymal marker expression in human umbilical vein endothelial cells (HUVECs), which were attenuated by liraglutide or Activin receptor-like 5 (ALK5) inhibitor SB431542. The inhibition of AMP-activated protein kinase (AMPK) signaling by Compound C diminished the liraglutide-mediated inhibitory effect on EndMT. Collectively, liraglutide was found to attenuate neointima formation in diabetic mice partially through EndMT inhibition, extending the potential therapeutic role of liraglutide.
    Materialart: Online-Ressource
    ISSN: 2073-4409
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2019
    ZDB Id: 2661518-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2021
    In:  International Journal of Molecular Sciences Vol. 22, No. 11 ( 2021-06-04), p. 6076-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 11 ( 2021-06-04), p. 6076-
    Kurzfassung: Particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5) increases oxidative stress through free radical generation and incomplete volatilization. In addition to affecting the respiratory system, PM2.5 causes aging- and inflammation-related damage to skin. Farnesol (Farn), a natural benzyl semiterpene, possesses anti-inflammatory, antioxidative, and antibacterial properties. However, because of its poor water solubility and cytotoxicity at high concentrations, the biomedical applications of Farn have been limited. This study examined the deleterious effects of PM2.5 on the epidermis and dermis. In addition, Farn-encapsulated liposomes (Lipo-Farn) and gelatin/HA/xanthan gel containing Lipo-Farn were prepared and applied in vivo to repair and alleviate PM2.5-induced damage and inflammation in skin. The prepared Lipo-Farn was 342 ± 90 nm in diameter with an encapsulation rate of 69%; the encapsulation significantly reduced the cytotoxicity of Farn. Lipo-Farn exhibited a slow-release rate of 35% after 192 h of incubation. The half-maximal inhibitory concentration of PM2.5 was approximately 850 μg/mL, and ≥400 μg/mL PM2.5 significantly increased IL-6 production in skin fibroblasts. Severe impairment in the epidermis and hair follicles and moderate impairment in the dermis were found in the groups treated with post-PM2.5 and continuous subcutaneous injection of PM2.5. Acute and chronic inflammation was observed in the skin in both experimental categories in vivo. Treatment with 4 mM Lipo-Farn largely repaired PM2.5-induced injury in the epidermis and dermis, restored injured hair follicles, and alleviated acute and chronic inflammation induced by PM2.5 in rat skin. In addition, treatment with 4 mM pure Farn and 2 mM Lipo-Farn exerted moderate reparative and anti-inflammatory effects on impaired skin. The findings of the current study indicate the therapeutic and protective effects of Lipo-Farn against various injuries caused by PM2.5 in the pilosebaceous units, epidermis, and dermis of skin.
    Materialart: Online-Ressource
    ISSN: 1422-0067
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2019364-6
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Pharmaceutics, MDPI AG, Vol. 14, No. 5 ( 2022-05-23), p. 1108-
    Kurzfassung: Airborne fine particulate matter (PM2.5) is a severe problem and is associated with health issues including liver diseases. Workers performing manual labor tend to be alcohol consumers during work, where they are also exposed to PM2.5. Long-term PM2.5 exposure can increase oxidative stress, leading to inflammation. Whether long-term exposure to air pollution and alcohol synergistically increases liver fibrosis risk warrants investigation. Oleanolic acid (OA)—a triterpenoid—has antioxidant and anti-inflammatory activities, but its low water solubility and cytotoxicity impair its potential applications. In this study, we fabricated liposomal OA nanoparticles (Lipo-OAs); then, we evaluated the anti-inflammatory effect on exposed cells and the ameliorative effect of Lipo-OAs on PM2.5 and alcohol-induced liver fibrosis in mice. The half maximal inhibitory concentration of PM2.5 for hepatic stellate cells was 900 μg/mL; at a concentration of ≥600 μg/mL, PM2.5 significantly increased interleukin-6 and tumor necrosis factor-α production. OA encapsulation in Lipo-OAs, 353 ± 140 nm in diameter with 79% encapsulation efficiency, significantly reduced OA cytotoxicity. Lipo-OAs treatment significantly reduced alanine aminotransferase, aspartate aminotransferase, and γ-glutamyltransferase levels; histologically, it alleviated steatosis and improved Ishak’s modified HAI score. In conclusion, Lipo-OAs have potential anti-inflammatory and reparative effects for PM2.5 and alcohol-induced liver injury treatment.
    Materialart: Online-Ressource
    ISSN: 1999-4923
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2527217-2
    SSG: 15,3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2022
    In:  Pharmaceutics Vol. 14, No. 1 ( 2022-01-13), p. 186-
    In: Pharmaceutics, MDPI AG, Vol. 14, No. 1 ( 2022-01-13), p. 186-
    Kurzfassung: Osteoarthritis (OA) is a joint disorder characterized by the progressive degeneration of articular cartilage. The phenotype and metabolism behavior of chondrocytes plays crucial roles in maintaining articular cartilage function. Chondrocytes dedifferentiate and lose their cartilage phenotype after successive subcultures or inflammation and synthesize collagen I and X (COL I and COL X). Farnesol, a sesquiterpene compound, has an anti-inflammatory effect and promotes collagen synthesis. However, its potent restoration effects on differentiated chondrocytes have seldom been evaluated. The presented study investigated farnesol’s effect on phenotype restoration by examining collagen and glycosaminoglycan (GAG) synthesis from dedifferentiated chondrocytes. The results indicated that chondrocytes gradually dedifferentiated through cellular morphology change, reduced expressions of COL II and SOX9, increased the expression of COL X and diminished GAG synthesis during four passages of subcultures. Pure farnesol and hyaluronan-encapsulated farnesol nanoparticles promote COL II synthesis. GAG synthesis significantly increased 2.5-fold after a farnesol treatment of dedifferentiated chondrocytes, indicating the restoration of chondrocyte functions. In addition, farnesol drastically increased the synthesis of COL II (2.5-fold) and GAG (15-fold) on interleukin-1β-induced dedifferentiated chondrocytes. A significant reduction of COL I, COL X and proinflammatory cytokine prostaglandin E2 was observed. In summary, farnesol may serve as a therapeutic agent in OA treatment.
    Materialart: Online-Ressource
    ISSN: 1999-4923
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2527217-2
    SSG: 15,3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Sensors, MDPI AG, Vol. 10, No. 12 ( 2010-12-20), p. 11633-11643
    Materialart: Online-Ressource
    ISSN: 1424-8220
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2010
    ZDB Id: 2052857-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 19, No. 10 ( 2018-10-10), p. 3094-
    Kurzfassung: Background: Diabetic cardiomyopathy (DCM) is characterized by cardiac fibrosis and stiffness, which often develops into heart failure. This study investigated the role of Ras protein-specific guanine nucleotide releasing factor 1 (RasGRF1) in the development of DCM. Methods: Forty-eight mice were divided into four groups (n = 12 per group): Group 1: Wild-type (WT) mice, Group 2: RasGRF1 deficiency (RasGRF1−/−) mice. Group 3: Streptozotocin (STZ)-induced diabetic WT mice, Group 4: STZ-induced diabetic RasGRF1−/− mice. Myocardial functions were assessed by cardiac echography. Heart tissues from all of the mice were investigated for cardiac fibrosis, inflammation, and oxidative stress markers. Results: Worse impaired diastolic function with elevation serum interleukin (IL)-6 was found in the diabetic group compared with the non-diabetic groups. Serum IL-6 levels were found to be elevated in the diabetic compared with the non-diabetic groups. However, the diabetic RasGRF1−/− mice exhibited lower serum IL-6 levels and better diastolic function than the diabetic WT mice. The diabetic RasGRF1−/− mice were associated with reduced cardiac inflammation, which was shown by lower invading inflammation cells, lower expression of matrix metalloproteinase 9, and less chemokines compared to the diabetic WT mice. Furthermore, less oxidative stress as well as extracellular matrix deposition leading to a reduction in cardiac fibrosis was also found in the diabetic RasGRF1−/− mice compared with the diabetic WT mice. Conclusion: The deletion of RasGRF1 attenuated myocardial fibrosis and improved cardiac function in diabetic mice through inhibiting inflammation and oxidative stress.
    Materialart: Online-Ressource
    ISSN: 1422-0067
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2018
    ZDB Id: 2019364-6
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Cancers, MDPI AG, Vol. 13, No. 14 ( 2021-07-17), p. 3592-
    Kurzfassung: It has been acknowledged that excess body weight increases the risk of colorectal cancer (CRC); however, there is little evidence on the impact of body mass index (BMI) on CRC patients’ long-term oncologic results in Asian populations. We studied the influence of BMI on overall survival (OS), disease-free survival (DFS), and CRC-specific survival rates in CRC patients from the administrative claims datasets of Taiwan using the Kaplan–Meier survival curves and the log-rank test to estimate the statistical differences among BMI groups. Underweight patients ( 〈 18.50 kg/m2) presented higher mortality (56.40%) and recurrence (5.34%) rates. Besides this, they had worse OS (aHR:1.61; 95% CI: 1.53–1.70; p-value: 〈 0.0001) and CRC-specific survival (aHR:1.52; 95% CI: 1.43–1.62; p-value: 〈 0.0001) rates compared with those of normal weight patients (18.50–24.99 kg/m2). On the contrary, CRC patients belonging to the overweight (25.00–29.99 kg/m2), class I obesity (30.00–34.99 kg/m2), and class II obesity (≥35.00 kg/m2) categories had better OS, DFS, and CRC-specific survival rates in the analysis than the patients in the normal weight category. Overweight patients consistently had the lowest mortality rate after a CRC diagnosis. The associations with being underweight may reflect a reverse causation. CRC patients should maintain a long-term healthy body weight.
    Materialart: Online-Ressource
    ISSN: 2072-6694
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2527080-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Healthcare, MDPI AG, Vol. 11, No. 14 ( 2023-07-19), p. 2068-
    Kurzfassung: Patient safety is a paramount concern in the medical field, and advancements in deep learning and Artificial Intelligence (AI) have opened up new possibilities for improving healthcare practices. While AI has shown promise in assisting doctors with early symptom detection from medical images, there is a critical need to prioritize patient safety by enhancing existing processes. To enhance patient safety, this study focuses on improving the medical operation process during X-ray examinations. In this study, we utilize EfficientNet for classifying the 49 categories of pre-X-ray images. To enhance the accuracy even further, we introduce two novel Neural Network architectures. The classification results are then compared with the doctor’s order to ensure consistency and minimize discrepancies. To evaluate the effectiveness of the proposed models, a comprehensive dataset comprising 49 different categories and over 12,000 training and testing sheets was collected from Taichung Veterans General Hospital. The research demonstrates a significant improvement in accuracy, surpassing a 4% enhancement compared to previous studies.
    Materialart: Online-Ressource
    ISSN: 2227-9032
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2023
    ZDB Id: 2721009-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...