GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2,842)
Material
Publisher
  • MDPI AG  (2,842)
Person/Organisation
Language
Years
  • 1
    In: Molecules, MDPI AG, Vol. 27, No. 5 ( 2022-02-27), p. 1577-
    Abstract: Mast cells (MCs) are an important treatment target for high-affinity IgE Fc receptor (FcεRI)-mediated allergic diseases. The plant-derived molecule 4-methylumbelliferone (4-MU) has beneficial effects in animal models of inflammation and autoimmunity diseases. The aim of this study was to examine 4-MU effects on MC activation and probe the underlying molecular mechanism(s). We sensitized rat basophilic leukemia cells (RBLs) and mouse bone marrow-derived mast cells (BMMCs) with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated them with exposure to DNP-human serum albumin (HSA), and then treated stimulated cells with 4-MU. Signaling-protein expression was determined by immunoblotting. In vivo allergic responses were examined in IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) mouse models. 4-MU inhibited β-hexosaminidase activity and histamine release dose-dependently in FcεRI-activated RBLs and BMMCs. Additionally, 4-MU reduced cytomorphological elongation and F-actin reorganization while down-regulating IgE/Ag-induced phosphorylation of SYK, NF-κB p65, ERK1/2, p38, and JNK. Moreover, 4-MU attenuated the PCA allergic reaction (i.e., less ear thickening and dye extravasation). Similarly, we found that 4-MU decreased body temperature, serum histamine, and IL4 secretion in OVA-challenged ASA model mice. In conclusion, 4-MU had a suppressing effect on MC activation both in vitro and in vivo and thus may represent a new strategy for treating IgE-mediated allergic conditions.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancers, MDPI AG, Vol. 13, No. 23 ( 2021-12-03), p. 6104-
    Abstract: Human papillomavirus (HPV) is a significant etiologic driver of penile squamous cell carcinoma (PSCC). The integration pattern of HPV and its carcinogenic mechanism in PSCC remain largely unclear. We retrospectively reviewed 108 PSCC cases who received surgery between 2008 and 2017. Using high-throughput viral integration detection, we identified 35 HPV-integrated PSCCs. Unlike cervical cancer, the HPV E2 oncogene was not prone to involvement in integration. Eleven of the 35 (31.4%) HPV-integrated PSCCs harbored intact HPV E2; these tumors had lower HPV E6 and E7 expression and higher expression of p53 and pRb proteins than those with disrupted E2 did (p 〈 0.001 and p = 0.024). Integration breakpoints are preferentially distributed in or near host genes, including previously reported hotspots (KLF5, etc.) and newly identified hotspots (CADM2, etc.), which are mainly involved in oncogenic signaling pathways (MAPK, JAK/STAT, etc.). Regarding the phosphorylation levels of JNK, p38 was higher in HPV-positive tumors with MAPK-associated integration than those in HPV-positive tumors with other integration and those in HPV-negative tumors. In vitro, KLF5 knockdown inhibited proliferation and invasion of PSCC cells, while silencing CADM2 promoted migration and invasion. In conclusion, this study enhances our understanding of HPV-induced carcinogenesis in PSCC, which may not only rely on the E6/E7 oncogenes, but mat also affect the expression of critical genes and thus activate oncogenic pathways.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Sensors, MDPI AG, Vol. 22, No. 22 ( 2022-11-20), p. 8978-
    Abstract: The objective of the proposed human–machine cooperation (HMC) workstation is to both rapidly detect calcium-based fish bones in masses of minced fish floss and visually guide operators in approaching and removing the detected fish bones by hand based on the detection of fingernails or plastic-based gloves. Because vibration is a separation mechanism that can prevent absorption or scattering in thick fish floss for UV fluorescence detection, the design of the HMC workstation included a vibration unit together with an optical box and display screens. The system was tested with commonly used fish (swordfish, salmon, tuna, and cod) representing various cooking conditions (raw meat, steam-cooked meat, and fish floss), their bones, and contaminating materials such as derived from gloves made of various types of plastic (polyvinylchloride, emulsion, and rubber) commonly used in the removal of fish bones. These aspects were each investigated using the spectrum analyzer and the optical box to obtain and analyze the fluorescence spectra and images. The filter was mounted on a charge-coupled device, and its transmission-wavelength window was based on the characteristic band for fish bones observed in the spectra. Gray-level AI algorithm was utilized to generate white marker rectangles. The vibration unit supports two mechanisms of air and downstream separation to improve the imaging screening of fish bones inside the considerable flow of fish floss. Notably, under 310 nm ultraviolet B (UVB) excitation, the fluorescence peaks of the raw fillets, steam-cooked meat, and fish floss were observed at for bands at longer wavelengths (500–600 nm), whereas those of the calcium and plastic materials occurred in shorter wavelength bands (400–500 nm). Perfect accuracy of 100% was achieved with the detection of 20 fish bones in 2 kg of fish floss, and the long test time of around 10–12 min results from the manual removal of these fish bones.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Water, MDPI AG, Vol. 11, No. 11 ( 2019-11-18), p. 2417-
    Abstract: The impacts of climate change on water resources in snow- and glacier-dominated basins are of great importance for water resource management. The Snowmelt Runoff Model (SRM) was developed to simulate and predict daily streamflow for high mountain basins where snowmelt runoff is a major contributor. However, there are many sources of uncertainty when using an SRM for hydrological simulations, such as low-quality input data, imperfect model structure and model parameters, and uncertainty from climate scenarios. Among these, the identification of model parameters is considered to be one of the major sources of uncertainty. This study evaluates the parameter uncertainty for SRM simulation based on different calibration strategies, as well as its impact on future hydrological projections in a data-scarce deglaciating river basin. The generalized likelihood uncertainty estimation (GLUE) method implemented by Monte Carlo sampling was used to estimate the model uncertainty arising from parameters calibrated by means of different strategies. Future snowmelt runoff projections under climate change impacts in the middle of the century and their uncertainty were assessed using average annual hydrographs, annual discharge and flow duration curves as the evaluation criteria. The results show that: (1) the strategy with a division of one or two sub-period(s) in a hydrological year is more appropriate for SRM calibration, and is also more rational for hydrological climate change impact assessment; (2) the multi-year calibration strategy is also more stable; and (3) the future runoff projection contains a large amount of uncertainty, among which parameter uncertainty plays a significant role. The projections also indicate that the onset of snowmelt runoff is likely to shift earlier in the year, and the discharge over the snowmelt season is projected to increase. Overall, this study emphasizes the importance of considering the parameter uncertainty of time-varying hydrological processes in hydrological modelling and climate change impact assessment.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Foods, MDPI AG, Vol. 11, No. 17 ( 2022-08-27), p. 2602-
    Abstract: Fermentation ability and alcohol production ability are important quality indicators of Chinese liquor Daqu, reflecting microbial growth and metabolic capacity and ethanol production capacity of Daqu microbiota, respectively. However, information on the microbial community related to the fermentation ability and alcohol production ability is unclear. In this study, fermentation functional microbiota (FFM) and alcohol functional microbiota (AFM) were obtained by correlating fermentation ability and alcohol production ability with Daqu microbiota. FFM and AFM consisted of 50 and 49 genera, respectively, which were basically the same at the phylum level but differed at the genus level. Correlation analysis showed that FFM and AFM were mainly affected by moisture, acidity, and humidity in the early stage of Daqu fermentation, and oxygen content was a critical factor for microbial succession in the middle stage of fermentation. FFM and AFM had commensal or synergistic interactions with multiple microbes. Function predictions indicated that fermentation functional bacterial microbiota was active in product synthesis and transport-related metabolic functions, and alcohol functional bacterial microbiota was very active in raw material utilization and its own metabolic synthesis. This study reveals the structural characteristics and formation mechanism of FFM and AFM, which is important for control of Daqu quality.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Polymers, MDPI AG, Vol. 14, No. 5 ( 2022-02-25), p. 927-
    Abstract: Konjac glucomannan (KGM) hydrogel has favorable gel-forming abilities, but its insufficient swelling capacity and poor control release characteristics limit its application. Therefore, in this study, oxidized hyaluronic acid (OHA) was used to improve the properties of KGM hydrogel. The influence of OHA on the structure and properties of KGM hydrogels was evaluated. The results show that the swelling capacity and rheological properties of the composite hydrogels increased with OHA concentration, which might be attributed to the hydrogen bond between the KGM and OHA, resulting in a compact three-dimensional gel network structure. Furthermore, epigallocatechin gallate (EGCG) was efficiently loaded into the KGM/OHA composite hydrogels and liberated in a sustained pattern. The cumulative EGCG release rate of the KGM/OHA hydrogels was enhanced by the increasing addition of OHA. The results show that the release rate of composite hydrogel can be controlled by the content of OHA. These results suggest that OHA has the potential to improve the properties and control release characteristics of KGM hydrogels.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 20, No. 5 ( 2023-03-06), p. 4663-
    Abstract: Sleep deprivation leads to reduced inhibitory control in individuals. However, the underlying neural mechanisms are poorly understood. Accordingly, this study aimed to investigate the effects of total sleep deprivation (TSD) on inhibitory control and their neuroelectrophysiological mechanisms from the perspective of the time course of cognitive processing and brain network connectivity, using event-related potential (ERP) and resting-state functional connectivity techniques. Twenty-five healthy male participants underwent 36 h of TSD (36-h TSD), completing Go/NoGo tasks and resting-state data acquisition before and after TSD; their behavioral and electroencephalogram data were recorded. Compared to baseline, participants’ false alarms for NoGo stimuli increased significantly (t = −4.187, p 〈 0.001) after 36-h TSD. ERP results indicated that NoGo-N2 negative amplitude increased and latency was prolonged (t = 4.850, p 〈 0.001; t = −3.178, p 〈 0.01), and NoGo-P3 amplitude significantly decreased and latency was prolonged (t = 5.104, p 〈 0.001; t = −2.382, p 〈 0.05) after 36-h TSD. Functional connectivity analysis showed that the connectivity of the default mode and visual networks in the high alpha band was significantly reduced after TSD (t = 2.500, p = 0.030). Overall, the results suggest that the negative amplitude increase in N2 after 36-h TSD may reveal that more attention and cognitive resources are invested after TSD; the significant decrease in P3 amplitude may indicate the impairment of advanced cognitive processing. Further functional connectivity analysis indicated impairment of the brain’s default mode network and visual information processing after TSD.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Environmental Research and Public Health Vol. 19, No. 19 ( 2022-09-25), p. 12150-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 19 ( 2022-09-25), p. 12150-
    Abstract: Lakes are considered sentinels of terrestrial environmental change. Nevertheless, our understanding of the impact of catchment anthropogenic activities on nutrients and the partial pressure of carbon dioxide (pCO2, an important parameter in evaluating CO2 levels in water) is still restrained by the scarcity of long-term observations. In this study, spatiotemporal variations in nutrient concentrations (total nitrogen: TN, total phosphorus: TP, nitrate: NO3−–N, and ammonium: NH4+–N) pCO2 in Taihu Lake were analyzed from 1992 to 2006, along with the gross domestic product (GDP) and wastewater discharge (WD) of its catchment. The study area was divided into three zones to characterize spatial heterogeneity in water quality: the inflow river mouth zone (Liangxi River and Zhihugang River), transition zone (Meiliang Bay), and central Taihu Lake, respectively. It is abundantly obvious that external nutrient inputs from the catchment have a notable impact on the water parameters in Taihu Lake, because nutrient concentrations and pCO2 were substantially higher in the inflow river mouth zone than in the open water of Meiliang Bay and central Taihu Lake. The GDP and WD of Taihu Lake’s catchment were significantly and positively correlated with the temporal variation in nutrient concentrations and pCO2, indicating that catchment development activities had an impact on Taihu Lake’s water quality. In addition, pCO2 was negatively correlated with chlorophyll a and the saturation of dissolved oxygen, but positively correlated with nutrient concentrations (e.g., TN, TP, and NH4+–N) in inflow river mouth zone of Taihu Lake. The findings of this study reveal that the anthropogenic activities of the catchment not only affect the water quality of Taihu Lake but also the CO2 concentrations. Consequently, catchment effects require consideration when modeling and estimating CO2 emissions from the extensively human-impacted eutrophic lakes.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cells, MDPI AG, Vol. 8, No. 11 ( 2019-11-04), p. 1385-
    Abstract: MicroRNAs (miRNAs) are important negative regulators of genes involved in physiological and pathological processes in plants and animals. It is worth exploring whether plant miRNAs play a cross-kingdom regulatory role in animals. Herein, we found that plant MIR167e-5p regulates the proliferation of enterocytes in vitro. A porcine jejunum epithelial cell line (IPEC-J2) and a human colon carcinoma cell line (Caco-2) were treated with 0, 10, 20, and 40 pmol of synthetic 2′-O-methylated plant MIR167e-5p, followed by a treatment with 20 pmol of MIR167e-5p for 0, 24, 48, and 72 h. The cells were counted, and IPEC-J2 cell viability was determined by the MTT and EdU assays at different time points. The results showed that MIR167e-5p significantly inhibited the proliferation of enterocytes in a dose- and time-dependent manner. Bioinformatics prediction and a luciferase reporter assay indicated that MIR167e-5p targets β-catenin. In IPEC-J2 and Caco-2 cells, MIR167e-5p suppressed proliferation by downregulating β-catenin mRNA and protein levels. MIR167e-5p relieved this inhibition. Similar results were achieved for the β-catenin downstream target gene c-Myc and the proliferation-associated gene PCNA. This research demonstrates that plant MIR167e-5p can inhibit enterocyte proliferation by targeting the β-catenin pathway. More importantly, plant miRNAs may be a new class of bioactive molecules for epigenetic regulation in humans and animals.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancers, MDPI AG, Vol. 14, No. 7 ( 2022-03-23), p. 1639-
    Abstract: Vasculogenic mimicry (VM) has been reported as an alternative channel to increase tumor nutrient supplies and accelerate tumor progression, and is associated with poor survival prognosis in multiple cancers, including renal cell carcinoma (RCC). The currently used anti-angiogenic treatment for metastatic RCC, sunitinib, a tyrosine kinase inhibitor (TKI), has been reported to induce VM formation. Previously we identified that the estrogen receptor β (ERβ) functions as an oncogenic factor to promote RCC progression, supported by the analytic results from The Cancer Genome Atlas (TCGA) database. We have also found evidence that sunitinib induces RCC VM formation by up-regulating ERβ expression. In this study, we further demonstrated that treatment with sunitinib, as well as axitinib, another TKI, could induce ERβ expression in RCC cell lines. Clinical clear cell RCC (ccRCC) patients with higher ERβ expression are more likely to be found VE-cadherin positive and VM positive. Mechanism dissection showed that TKI- induced ERβ transcriptionally up-regulates the circular RNA of DGKD (circDGKD, hsa_circ_0058763), which enhances VE-cadherin expression by sponging the microRNA miR-125-5p family. Targeting circDGKD intercepts sunitinib-pretreatment-induced RCC VM formation, reduces metastases and improves survival in an experimental orthotopic animal model. Targeting ERβ/circDGKD signals may improve the TKI efficacy and provide novel combination therapies for metastatic RCC.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...