GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2012
    In:  International Journal of Molecular Sciences Vol. 13, No. 3 ( 2012-03-21), p. 3718-3737
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 13, No. 3 ( 2012-03-21), p. 3718-3737
    Abstract: This study synthesized a europium (Eu3+) complex Eu(DBM)3Cl-MIP (DBM = dibenzoyl methane; Cl-MIP = 2-(2-chlorophenyl)-1-methyl-1H-imidazo[4,5-f][1,10] phenanthroline) dispersed in a benzyl methacrylate (BMA) monomer and treated with ultraviolet (UV) light for polymerization. Spectral results showed that the europium complex containing an antenna, Cl-MIP, which had higher triplet energy into the Eu3+ energy level, was an energetically enhanced europium emission. Typical stacking behaviors of π–π interactions between the ligands and the Eu3+-ion were analyzed using single crystal X-ray diffraction. Regarding the luminescence performance of this europium composite, the ligand/defect emission was suppressed by dispersion in a poly-BMA (PBMA) matrix. The underlying mechanism of the effective enhancement of the pure Eu3+ emission was attributed to the combined effects of structural modifications, defect emissions, and carrier charge transfer. Fluorescence spectra were compared to the composite of optimized Eu3+ emission where they were subsequently chelated to four metal ions via carboxylate groups on the BMA unit. The optical enhanced europium composite clearly demonstrated highly efficient optical responses and is, therefore a promising application as an optical detection material.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2012
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancers, MDPI AG, Vol. 14, No. 11 ( 2022-05-31), p. 2714-
    Abstract: Background: The hypothesis that breast cancer (BC) susceptibility variants are linked to chemotherapy-induced toxicity has been previously explored. Here, we investigated the association between a validated 313-marker-based BC polygenic risk score (PRS) and chemotherapy-induced neutropenia without fever and febrile neutropenia (FNc) in Asian BC patients. Methods: This observational case-control study of Asian BC patients treated with chemotherapy included 161 FNc patients, 219 neutropenia patients, and 936 patients who did not develop neutropenia. A continuous PRS was calculated by summing weighted risk alleles associated with overall, estrogen receptor- (ER-) positive, and ER-negative BC risk. PRS distributions neutropenia or FNc cases were compared to controls who did not develop neutropenia using two-sample t-tests. Odds ratios (OR) and corresponding 95% confidence intervals were estimated for the associations between PRS (quartiles and per standard deviation (SD) increase) and neutropenia-related outcomes compared to controls. Results: PRS distributions were not significantly different in any of the comparisons. Higher PRSoverall quartiles were negatively correlated with neutropenia or FNc. However, the associations were not statistically significant (PRS per SD increase OR neutropenia: 0.91 [0.79–1.06]; FNc: 0.87 [0.73–1.03] ). No dose-dependent trend was observed for the ER-positive weighted PRS (PRSER-pos) and ER-negative weighted PRS (PRSER-neg). Conclusion: BC PRS was not strongly associated with chemotherapy-induced neutropenia or FNc.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...