GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
Material
Publisher
  • MDPI AG  (2)
Language
Years
FID
  • 1
    In: Pharmaceutics, MDPI AG, Vol. 15, No. 5 ( 2023-05-18), p. 1530-
    Abstract: Antiretrovirals (ARVs) are a highly effective therapy for treatment and prevention of HIV infection, when administered as prescribed. However, adherence to lifelong ARV regimens poses a considerable challenge and places HIV patients at risk. Long-acting ARV injections may improve patient adherence as well as maintaining long-term continuous drug exposure, resulting in improved pharmacodynamics. In the present work, we explored the aminoalkoxycarbonyloxymethyl (amino-AOCOM) ether prodrug concept as a potential approach to long-acting ARV injections. As a proof of concept, we synthesised model compounds containing the 4-carboxy-2-methyl Tokyo Green (CTG) fluorophore and assessed their stability under pH and temperature conditions that mimic those found in the subcutaneous (SC) tissue. Among them, probe 21 displayed very slow fluorophore release under SC-like conditions (98% of the fluorophore released over 15 d). Compound 25, a prodrug of the ARV agent raltegravir (RAL), was subsequently prepared and evaluated using the same conditions. This compound showed an excellent in vitro release profile, with a half-life (t½) of 19.3 d and 82% of RAL released over 45 d. In mice, 25 extended the half-life of unmodified RAL by 4.2-fold (t½ = 3.18 h), providing initial proof of concept of the ability of amino-AOCOM prodrugs to extend drug lifetimes in vivo. Although this effect was not as pronounced as seen in vitro—presumably due to enzymatic degradation and rapid clearance of the prodrug in vivo—the present results nevertheless pave the way for development of more metabolically stable prodrugs, to facilitate long-acting delivery of ARVs.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Pharmaceutics, MDPI AG, Vol. 15, No. 1 ( 2023-01-16), p. 303-
    Abstract: Drug targeting is necessary to deliver drugs to a specific site of action at a rate dictated by therapeutic requirements. The pharmacological action of a drug can thereby be optimised while minimising adverse effects. Numerous colonic drug delivery systems have been developed to avoid such undesirable side effects; however, these systems lack site specificity, leaving room for further improvement. The objective of the present study was to explore the potential of amino-alkoxycarbonyloxymethyl (amino-AOCOM) ether prodrugs as a general approach for future colonic delivery. To circumvent inter- and intra-subject variabilities in enzyme activities, these prodrugs do not rely on enzymes but rather are activated via a pH-triggered intramolecular cyclisation–elimination reaction. As proof of concept, model compounds were synthesised and evaluated under various pH conditions, simulating various regions of the gastrointestinal tract (GIT). Probe 15 demonstrated excellent stability under simulated stomach- and duodenum-like conditions and protected 60% of the payload in a small intestine-like environment. Moreover, 15 displayed sustained release at colonic pH, delivering 〉 90% of the payload over 38 h. Mesalamine (Msl) prodrugs 21 and 22 were also synthesised and showed better stability than probe 15 in the simulated upper GIT but relatively slower release at colonic pH (61–68% of Msl over 48 h). For both prodrugs, the extent of release was comparable to that of the commercial product Asacol. This study provides initial proof of concept regarding the use of a cyclisation-activated prodrug for colon delivery and suggests that release characteristics still vary on a case-by-case basis.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...