GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (5)
  • 1
    In: Minerals, MDPI AG, Vol. 11, No. 12 ( 2021-11-29), p. 1340-
    Abstract: Dolomite plays an important role in carbonate reservoirs. The topography in the study area creates conditions for reflux dolomitization. The northeastward paleogeomorphy during the deposition of the Yingshan Formation was favorable for reflux dolomitization. Furthermore, the petrological and geochemical evidence indicated that the formation of finely crystalline dolomites was penecontemporaneous to sedimentation. The content of powder crystal dolomites increases from grainstone, to packstone, to mudstone. Previous studies only analyzed the origin of dolomites based on traditional geological methods, but did not analyze the spatial influence of reflux dolomitization on the reservoir quality. In this study, the reflux dolomitization of platform carbonate sediments was evaluated using three-dimensional reactive transport models. The sensitivity of dolomitization to a range of intrinsic and extrinsic controls was also explored. The reflux dolomitization involves replacement dolomitization and over-dolomitization. The porosity change is the result of the abundance change of dolomite and anhydrite. The fluid flow pattern in the model is related to the injection rate and geothermal gradient. According to the spatial and temporal change of mineral, ionic concentration, and physical property, the reflux dolomitization could be divided into five stages. From the sensitivity analysis, high permeability promotes dolomitization only in the initial stage, while low permeability and high porosity means stronger dolomitization. Besides, the injection rate, reactive surface area (RSA), geothermal gradient, and brine salinity are all proportional to the dolomitization. Differently from porosity change, the permeability change is concentrated in the upper part of the numerical model. The location of “sweet spot” varies with the locations of change centers of porosity and permeability. In the stage-1 and 4 of dolomitzation, it overlaps with porosity and permeability growth centers. While in the stage-2, 3 and 5, it lies between the porosity and permeability growth/reduction centers.
    Type of Medium: Online Resource
    ISSN: 2075-163X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2655947-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Electronics Vol. 11, No. 21 ( 2022-10-26), p. 3468-
    In: Electronics, MDPI AG, Vol. 11, No. 21 ( 2022-10-26), p. 3468-
    Abstract: With the rapid development of advanced neuroimaging techniques, understanding the brain in terms of structural and functional connectomes has become one of the frontier topics in neuroscience. Different from traditional descriptive brain network models, which focused on single neuroimaging modal and temporal scales, multiscale brain network models consisting of mesoscopic neuronal activity and macroscopic functional dynamics can provide a mechanistic understanding for brain disorders. Here, we review the foundation of multiscale brain network models and their applications in neuropsychiatric diseases. We first describe some basic elements of a multiscale brain network model, including network connections, dynamics of regional neuronal populations, and model fittings to different metrics of fMRI. Secondly, we draw comparisons between multiscale brain network models and other large-scale brain models. Additionally, then we survey the related applications of multiscale brain network models in understanding underlying mechanisms of some brain disorders, such as Parkinson’s disease, Alzheimer’s disease, and Schizophrenia. Finally, we discuss the limitations of current multiscale brain network models and future potential directions for model development. We argue that multiscale brain network models are more comprehensive than traditional single modal brain networks and would be a powerful tool to explore neuronal mechanisms underlying different brain disorders measured by neuroimaging.
    Type of Medium: Online Resource
    ISSN: 2079-9292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662127-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Journal of Marine Science and Engineering Vol. 11, No. 8 ( 2023-08-15), p. 1597-
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 11, No. 8 ( 2023-08-15), p. 1597-
    Abstract: Crude oil transportation is a vital component of the global energy supply, and the global Crude Oil Maritime Transportation Network (COMTN) plays a crucial role as a carrier for crude oil transportation. Once the network faces attacks that result in the failure of certain routes, a severe threat is posed to the crude oil supply security of importing countries. Therefore, it is crucial to evaluate the reliability of the COMTN. This study proposes a model for evaluating the reliability of the imported COMTN by analyzing the impact of node failures. Firstly, the network is constructed using complex networks (CNs) theory, with ports, canals, and straits as nodes, and shipping routes as directed edges. Secondly, based on the Weighted Leader Rank algorithm, a comprehensive evaluation metric for CNs is established, and a node importance assessment model is developed to rank the nodes accordingly. Thirdly, a case study is conducted using China’s imported COMTN as an example, evaluating the connectivity reliability (CR) under random and deliberate attack scenarios. Finally, measures and recommendations are provided to enhance the CR of China’s imported COMTN. The findings indicate that deliberate attacks pose a greater threat, and reliability varies across maritime routes, with the Americas route exhibiting higher reliability compared to the Middle East and Southeast Asia routes. The results of this study can provide relevant recommendations for policy makers. The model proposed in this study can also be applied to other countries and regions to assess the connectivity reliability of their local COMTNs and develop appropriate measures for the results.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Forests, MDPI AG, Vol. 10, No. 10 ( 2019-10-17), p. 914-
    Abstract: Key Findings: Combining physical fractionation and pyrolysis–gas chromatography/mass spectrometry (py-GC/MS) technique can help better understand the dynamics of soil organic matter (SOM). Background and Objectives: SOM plays a critical role in the global carbon (C) cycle. However, its complexity remains a challenge in characterizing chemical molecular composition within SOM and under nitrogen (N) deposition. Materials and Methods: Three particulate organic matter (POM) fractions within SOM and under N treatments were studied from perspectives of distributions, C contents and chemical signatures in a subtropical forest. N addition experiment was conducted with two inorganic N forms (NH4Cl and NaNO3) applied at three rates of 0, 40, 120 kg N ha−1 yr−1. Three particle-size fractions ( 〉 250 μm, 53–250 μm and 〈 53 μm) were separated by a wet-sieving method. Py-GC/MS technique was used to differentiate between chemical composition. Results: A progressive proportion transfer of mineral-associated organic matter (MAOM) to fine POM under N treatment was found. Only C content in fine POM was sensitive to N addition. Principal component analyses (PCA) showed that the coarse POM had the largest plant-derived markers (lignins, phenols, long-chain n-alkanes, and n-alkenes). Short-chain n-alkanes and n-alkenes, benzofurans, aromatics and polycyclic aromatic hydrocarbons mainly from black carbon prevailed in the fine POM. N compounds and polysaccharides from microbial products dominated in the MAOM. Factor analysis revealed that the degradation extent of three fractions was largely distinct. The difference in chemical structure among three particulate fractions within SOM was larger than treatments between control and N addition. In terms of N treatment impact, the MAOM fraction had fewer benzofurans compounds and was enriched in polysaccharides, indicating comparatively weaker mineralization and stronger stabilization of these substances. Conclusions: Our findings highlight the importance of chemical structure in SOM pools and help to understand the influence of N deposition on SOM transformation.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Viruses, MDPI AG, Vol. 12, No. 10 ( 2020-10-03), p. 1125-
    Abstract: Characterizing the spatial transmission pattern is critical for better surveillance and control of human influenza. Here, we propose a mutation network framework that utilizes network theory to study the transmission of human influenza H3N2. On the basis of the mutation network, the transmission analysis captured the circulation pattern from a global simulation of human influenza H3N2. Furthermore, this method was applied to explore, in detail, the transmission patterns within Europe, the United States, and China, revealing the regional spread of human influenza H3N2. The mutation network framework proposed here could facilitate the understanding, surveillance, and control of other infectious diseases.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...