GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Clinical Medicine, MDPI AG, Vol. 11, No. 5 ( 2022-02-24), p. 1233-
    Abstract: Fabry disease is an X-linked lysosomal disease in which defects in the alpha-galactosidase A enzyme activity lead to the ubiquitous accumulation of glycosphingolipids. Whereas the classic disease is characterized by neuropathic pain, progressive renal failure, white matter lesions, cerebral stroke, and hypertrophic cardiomyopathy (HCM), the non-classic phenotype, also known as cardiac variant, is almost exclusively characterized by HCM. Circulating sphingosine-1-phosphate (S1P) has controversially been associated with the Fabry cardiomyopathy. We measured serum S1P levels in 41 patients of the FFABRY cohort. S1P levels were higher in patients with a non-classic phenotype compared to those with a classic phenotype (200.3 [189.6–227.9] vs. 169.4 ng/mL [121.1–203.3] , p = 0.02). In a multivariate logistic regression model, elevated S1P concentration remained statistically associated with the non-classic phenotype (OR = 1.03; p 〈 0.02), and elevated lysoGb3 concentration with the classic phenotype (OR = 0.95; p 〈 0.03). S1P levels were correlated with interventricular septum thickness (r = 0.46; p = 0.02). In a logistic regression model including S1P serum levels, phenotype, and age, age remained the only variable significantly associated with the risk of HCM (OR = 1.25; p = 0.001). S1P alone was not associated with cardiac hypertrophy but with the cardiac variant. The significantly higher S1P levels in patients with the cardiac variant compared to those with classic Fabry suggest the involvement of distinct pathophysiological pathways in the two phenotypes. S1P dosage could allow the personalization of patient management.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Personalized Medicine, MDPI AG, Vol. 11, No. 9 ( 2021-09-08), p. 898-
    Abstract: Background: Fabry disease (FD) is an X-linked lysosomal disease due to a deficiency in the activity of the lysosomal α-galactosidase A (GalA), a key enzyme in the glycosphingolipid degradation pathway. FD is a complex disease with a poor genotype–phenotype correlation. FD could involve kidney, heart or central nervous system impairment that significantly decreases life expectancy. The advent of omics technologies offers the possibility of a global, integrated and systemic approach well-suited for the exploration of this complex disease. Materials and Methods: Sixty-six plasmas of FD patients from the French Fabry cohort (FFABRY) and 60 control plasmas were analyzed using liquid chromatography and mass spectrometry-based targeted metabolomics (188 metabolites) along with the determination of LysoGb3 concentration and GalA enzymatic activity. Conventional univariate analyses as well as systems biology and machine learning methods were used. Results: The analysis allowed for the identification of discriminating metabolic profiles that unambiguously separate FD patients from control subjects. The analysis identified 86 metabolites that are differentially expressed, including 62 Glycerophospholipids, 8 Acylcarnitines, 6 Sphingomyelins, 5 Aminoacids and 5 Biogenic Amines. Thirteen consensus metabolites were identified through network-based analysis, including 1 biogenic amine, 2 lysophosphatidylcholines and 10 glycerophospholipids. A predictive model using these metabolites showed an AUC-ROC of 0.992 (CI: 0.965–1.000). Conclusion: These results highlight deep metabolic remodeling in FD and confirm the potential of omics-based approaches in lysosomal diseases to reveal clinical and biological associations to generate pathophysiological hypotheses.
    Type of Medium: Online Resource
    ISSN: 2075-4426
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662248-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Biomedicines, MDPI AG, Vol. 10, No. 8 ( 2022-08-20), p. 2036-
    Abstract: Introduction: immune-mediated necrotising myopathy (IMNM) is associated with pathogenic anti-signal recognition particle (SRP) or 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) antibodies, at least partly through activation of the classical pathway of the complement. We evaluated zilucoplan, an investigational drug, and a macrocyclic peptide inhibitor of complement component 5 (C5), in humanized mouse models of IMNM. Methods: purified immunoglobulin G (IgG) from an anti-HMGCR+ IMNM patient was co-injected intraperitoneally with human complement in C57BL/6, C5-deficient B10 (C5def) and Rag2 deficient (Rag2−/−) mice. Zilucoplan was administered subcutaneously in a preventive or interventional paradigm, either injected daily throughout the duration of the experiment in C57BL/6 and C5def mice or 8 days after disease induction in Rag2−/− mice. Results: prophylactic administration of zilucoplan prevented muscle strength loss in C5def mice (anti-HMGCR+ vs. anti-HMGCR+ + zilucoplan: p = 0.0289; control vs. anti-HMGCR+ + zilucoplan: p = 0.4634) and wild-type C57BL/6 (anti-HMGCR+ vs. anti-HMGCR+ + zilucoplan: p = 0.0002; control vs. anti-HMGCR+ + zilucoplan: p = 0.0939) with corresponding reduction in C5b-9 deposits on myofibres and number of regenerated myofibres. Interventional treatment of zilucoplan after disease induction reduced the complement deposits and number of regenerated myofibres in muscles of Rag2−/− mice, although to a lesser extent. In this latter setting, C5 inhibition did not significantly ameliorate muscle strength. Conclusion: Early administration of zilucoplan prevents the onset of myopathy at the clinical and histological level in a humanized mouse model of IMNM.
    Type of Medium: Online Resource
    ISSN: 2227-9059
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2720867-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Clinical Medicine, MDPI AG, Vol. 9, No. 5 ( 2020-05-02), p. 1325-
    Abstract: Background: Fabry disease (FD) is an X-linked progressive lysosomal disease (LD) due to glycosphingolipid metabolism impairment. Currently, plasmatic globotriaosylsphingosine (LysoGb3) is used for disease diagnosis and monitoring. However, this biomarker is inconstantly increased in mild forms and in some female patients. Materials and Methods: We applied a targeted proteomic approach to explore disease-related biological patterns that might explain the disease pathophysiology. Forty proteins, involved mainly in inflammatory and angiogenesis processes, were assessed in 69 plasma samples retrieved from the French Fabry cohort (FFABRY) and from 83 healthy subjects. For predictive performance assessment, we also included other LD samples (Gaucher, Pompe and Niemann Pick C). Results: The study yielded four discriminant proteins that include three angiogenesis proteins (fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor C (VEGFC)) and one cytokine interleukin 7 (IL-7). A clear elevation of FGF2 and IL-7 concentrations was observed in FD compared to other LD samples. No correlation was observed between these proteins and globotriaosylsphingosine (LysoGb3). A significant correlation exists between IL-7 and residual enzyme activity in a non-classical phenotype. This highlights the orthogonal biological information yielded by these proteins that might help in stratifying Fabry patients. Conclusion: This work highlights the potential of using proteomics approaches in exploring FD and enhancing FD diagnosis and therapeutic monitoring performances.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cells, MDPI AG, Vol. 10, No. 10 ( 2021-09-27), p. 2551-
    Abstract: Background: Pulmonary affection (PA) is associated with a substantial increase in morbidity and mortality in patients with idiopathic inflammatory myopathies (IIM). However, the underlying immune mechanisms of PA remain enigmatic and prompt deeper immunological analyses. Importantly, the Janus-faced role of natural killer (NK) cells, capable of pro-inflammatory as well as regulatory effects, might be of interest for the pathophysiologic understanding of PA in IIM. Methods: To extend our understanding of immunological alterations in IIM patients with PA, we compared the signatures of NK cells in peripheral blood using multi-color flow cytometry in IIM patients with (n = 12, of which anti-synthetase syndrome = 8 and dermatomyositis = 4) or without PA (n = 12). Results: We did not observe any significant differences for B cells, CD4, and CD8 T cells, while total NK cell numbers in IIM patients with PA were reduced compared to non-PA patients. NK cell alterations were driven by a particular decrease of CD56dim NK cells, while CD56bright NK cells remained unchanged. Comparisons of the cell surface expression of a large panel of NK receptors revealed an increased mean fluorescence intensity of NKG2D+ on NK cells from patients with PA compared with non-PA patients, especially on the CD56dim subset. NKG2D+ and NKp46+ cell surface levels were associated with reduced vital capacity, serving as a surrogate marker for clinical severity of PA. Conclusion: Our data illustrate that PA in IIM is associated with alterations of the NK cell repertoire, suggesting a relevant contribution of NK cells in certain IIMs, which might pave the way for NK cell-targeted therapeutic approaches.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cells, MDPI AG, Vol. 11, No. 20 ( 2022-10-21), p. 3330-
    Abstract: Chronic inflammation of skeletal muscle is the common feature of idiopathic inflammatory myopathies (IIM). Given the rarity of the disease and potential difficulty of routinely obtaining target tissue, i.e., standardized skeletal muscle, our understanding of immune signatures of the IIM spectrum remains incomplete. Further insight into the immune topography of IIM is needed to determine specific treatment targets according to clinical and immunological phenotypes. Thus, we used high-dimensional flow cytometry to investigate the immune phenotypes of anti-synthetase syndrome (ASyS), dermatomyositis (DM) and inclusion-body myositis (IBM) patients as representative entities of the IIM spectrum and compared them to healthy controls. We studied the CD8, CD4 and B cell compartments in the blood aiming to provide a contemporary overview of the immune topography of the IIM spectrum. ASyS was characterized by altered CD4 composition and expanded T follicular helper cells supporting B cell-mediated autoimmunity. For DM, unsupervised clustering identified expansion of distinct B cell subtypes highly expressing immunoglobulin G4 (IgG4) and CD38. Lastly, terminally differentiated, cytotoxic CD8 T cells distinguish IBM from other IIM. Interestingly, these terminally differentiated CD8 T cells highly expressed the integrin CD18 mediating cellular adhesion and infiltration. The distinct immune cell topography of IIM might provide the framework for targeted treatment approaches potentially improving therapeutic outcomes.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...