GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Antioxidants, MDPI AG, Vol. 10, No. 7 ( 2021-06-28), p. 1036-
    Abstract: (1) Background: One third of patients who receive cisplatin develop an acute kidney injury. We previously demonstrated the Na/H Exchange Regulatory Factor 1 (NHERF1) loss resulted in increased kidney enzyme activity of the pentose phosphate pathway and was associated with more severe cisplatin nephrotoxicity. We hypothesized that changes in proximal tubule biochemical pathways associated with NHERF1 loss alters renal metabolism of cisplatin or response to cisplatin, resulting in exacerbated nephrotoxicity. (2) Methods: 2–4 month-old male wild-type and NHERF1 knock out littermate mice were treated with either vehicle or cisplatin (20 mg/kg dose IP), with samples taken at either 4, 24, or 72 h. Kidney injury was determined by urinary neutrophil gelatinase-associated lipocalin and histology. Glutathione metabolites were measured by HPLC and genes involved in glutathione synthesis were measured by qPCR. Kidney handling of cisplatin was assessed by a kidney cortex measurement of γ-glutamyl transferase activity, Western blot for γ-glutamyl transferase and cysteine S-conjugate beta lyase, and ICP-MS for platinum content. (3) Results: At 24 h knock out kidneys show evidence of greater tubular injury after cisplatin and exhibit a decreased reduced/oxidized glutathione ratio under baseline conditions in comparison to wild-type. KO kidneys fail to show an increase in γ-glutamyl transferase activity and experience a more rapid decline in tissue platinum when compared to wild-type. (4) Conclusions: Knock out kidneys show evidence of greater oxidative stress than wild-type accompanied by a greater degree of early injury in response to cisplatin. NHERF1 loss has no effect on the initial accumulation of cisplatin in the kidney cortex but is associated with an altered redox status which may alter the activity of enzymes involved in cisplatin metabolism.
    Type of Medium: Online Resource
    ISSN: 2076-3921
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704216-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Clinical Medicine, MDPI AG, Vol. 10, No. 4 ( 2021-02-16), p. 793-
    Abstract: Kidney involvement in systemic lupus erythematosus (SLE)—termed lupus nephritis (LN)—is a severe manifestation of SLE that can lead to end-stage kidney disease (ESKD). LN is characterized by immune complex deposition and inflammation in the glomerulus. We tested the hypothesis that autoantibodies targeting podocyte and glomerular cell proteins contribute to the development of immune complex formation in LN. We used Western blotting with SLE sera from patients with and without LN to identify target antigens in human glomerular and cultured human-derived podocyte membrane proteins. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified the proteins in the gel regions corresponding to reactive bands observed with sera from LN patients. We identified 102 proteins that were present in both the podocyte and glomerular samples. We identified 10 high-probability candidates, including moesin, using bioinformatic analysis. Confirmation of moesin as a target antigen was conducted using immunohistochemical analysis (IHC) of kidney biopsy tissue and enzyme-linked immunosorbent assay (ELISA) to detect circulating antibodies. By IHC, biopsies from patients with proliferative lupus nephritis (PLN, class III/IV) demonstrated significantly increased glomerular expression of moesin (p 〈 0.01). By ELISA, patients with proliferative LN demonstrated significantly increased antibodies against moesin (p 〈 0.01). This suggests that moesin is a target glomerular antigen in lupus nephritis.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Fungi, MDPI AG, Vol. 10, No. 4 ( 2024-03-30), p. 262-
    Abstract: Microbotryum lychnidis-dioicae is an obligate fungal species colonizing the plant host, Silene latifolia. The fungus synthesizes and secretes effector proteins into the plant host during infection to manipulate the host for completion of the fungal lifecycle. The goal of this study was to continue functional characterization of such M. lychnidis-dioicae effectors. Here, we identified three putative effectors and their putative host-plant target proteins. MVLG_02245 is highly upregulated in M. lychnidis-dioicae during infection; yeast two-hybrid analysis suggests it targets a tubulin α-1 chain protein ortholog in the host, Silene latifolia. A potential plant protein interacting with MVLG_06175 was identified as CASP-like protein 2C1 (CASPL2C1), which facilitates the polymerization of the Casparian strip at the endodermal cells. Proteins interacting with MVLG_05122 were identified as CSN5a or 5b, involved in protein turnover. Fluorescently labelled MVLG_06175 and MVLG_05122 were expressed in the heterologous plant, Arabidopsis thaliana. MVLG_06175 formed clustered granules at the tips of trichomes on leaves and in root caps, while MVLG_05122 formed a band structure at the base of leaf trichomes. Plants expressing MVLG_05122 alone were more resistant to infection with Fusarium oxysporum. These results indicate that the fungus might affect the formation of the Casparian strip in the roots and the development of trichomes during infection as well as alter plant innate immunity.
    Type of Medium: Online Resource
    ISSN: 2309-608X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2784229-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Antioxidants, MDPI AG, Vol. 9, No. 9 ( 2020-09-14), p. 862-
    Abstract: (1) Background: We previously showed Na/H exchange regulatory factor 1 (NHERF1) loss resulted in increased susceptibility to cisplatin nephrotoxicity. NHERF1-deficient cultured proximal tubule cells and proximal tubules from NHERF1 knockout (KO) mice exhibit altered mitochondrial protein expression and poor survival. We hypothesized that NHERF1 loss results in changes in metabolic pathways and/or mitochondrial dysfunction, leading to increased sensitivity to cisplatin nephrotoxicity. (2) Methods: Two to 4-month-old male wildtype (WT) and KO mice were treated with vehicle or cisplatin (20 mg/kg dose IP). After 72 h, kidney cortex homogenates were utilized for metabolic enzyme activities. Non-treated kidneys were used to isolate mitochondria for mitochondrial respiration via the Seahorse XF24 analyzer. Non-treated kidneys were also used for LC-MS analysis to evaluate kidney ATP abundance, and electron microscopy (EM) was utilized to evaluate mitochondrial morphology and number. (3) Results: KO mouse kidneys exhibit significant increases in malic enzyme and glucose-6 phosphate dehydrogenase activity under baseline conditions but in no other gluconeogenic or glycolytic enzymes. NHERF1 loss does not decrease kidney ATP content. Mitochondrial morphology, number, and area appeared normal. Isolated mitochondria function was similar between WT and KO. Conclusions: KO kidneys experience a shift in metabolism to the pentose phosphate pathway, which may sensitize them to the oxidative stress imposed by cisplatin.
    Type of Medium: Online Resource
    ISSN: 2076-3921
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2704216-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Metabolites Vol. 12, No. 2 ( 2022-02-06), p. 151-
    In: Metabolites, MDPI AG, Vol. 12, No. 2 ( 2022-02-06), p. 151-
    Abstract: Inflammation and oxidative stress are well established in systemic lupus erythematosus (SLE) and are critical to the pathogenesis of autoimmune diseases. The transcription factor NF-E2 related factor 2 (Nrf2) is a central regulator of cellular anti-oxidative responses, inflammation, and restoration of redox balance. Accumulating reports support an emerging role for the regulation of Nrf2 in SLE. These include findings on the development of lupus-like autoimmune nephritis and altered immune cell populations in mice lacking Nrf2, as well as decreased Nrf2 abundance in the dendritic cells of patients with SLE. Nrf2-inducing agents have been shown to alleviate oxidative and inflammatory stress and reduce tissue injury in SLE mouse models. Since Nrf2 expression can be increased in activated T cells, the precise role of Nrf2 activation in different immune cell types and their function remains to be defined. However, targeting Nrf2 for the treatment of diseases associated with oxidative stress and inflammation, such as SLE, is promising. As investigation of Nrf2-inducing agents in clinical trials grows, defining the signaling and molecular mechanisms of action and downstream effects in response to different Nrf2-inducing agents in specific cells, tissues, and diseases, will be critical for effective clinical use.
    Type of Medium: Online Resource
    ISSN: 2218-1989
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662251-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Clinical Medicine, MDPI AG, Vol. 11, No. 11 ( 2022-06-03), p. 3199-
    Abstract: Background: Lupus nephritis (LN) is a prevalent and severe complication of systemic lupus erythematosus (SLE). Non-invasive diagnostics are limited, and current therapies have inadequate response rates. Expression of the chemokine Interferon-γ-induced protein 10 (IP-10) is regulated by Interferon-γ signaling and NF-κB, and its molecular activity and enhanced urine concentrations are implicated in LN, but its utility as a diagnostic marker and association with demographic, clinical, or pathologic features is not defined. Methods: 38 LN patients and 11 patients with non-LN glomerular diseases (GD) with active disease were included. Eighteen of the LN patients had achieved remission at one follow-up during the study time. Serum and urine were obtained from these samples, and the IP-10 levels were measured. Results: Serum and urine IP-10 levels are significantly enhanced in LN patients with active disease as compared with normal individuals (serum average 179.7 pg/mL vs. 7.2 pg/mL, p 〈 0.0001; urine average 28.7 pg/mg vs. 1.6 pg/mg, p = 0.0019) and patients with other forms of glomerular disease (serum average 179.7 pg/mL vs. 84.9 pg/mL, p = 0.0176; urine average 28.7 pg/mg vs. 0.18 pg/mg, p = 0.0011). Urine IP-10 levels are significantly higher in patients with proliferative LN (PLN) than those with membranous LN (MLN) (average 32.8 pg/mg vs. 7.6 pg/mg, p = 0.0155). Urine IP-10 levels are also higher in MLN versus primary membranous nephropathy (MN) (average 7.6 pg/mg vs. 0.2 pg/mg, p = 0.0193). Importantly, serum IP-10 levels remain elevated during active LN and LN remission, but urine IP-10 levels are decreased from active LN to remission in 72% of our patients. Lastly, serum, but not urine IP-10 levels are significantly higher in African American than White American LN patients in active LN (average 227.8 pg/mL vs. 103.4 pg/mL, p = 0.0309) and during LN remission (average 254.6 pg/mL vs. 89.2 pg/mL, p = 0.0399). Conclusions: Our findings suggest that serum and urine IP-10 measurements provide promising tests for monitoring LN activity, differentiation between classifications of LN, and differentiation between LN and other forms of glomerular disease. We also conclude that further assessment of elevated IP-10 levels in the serum and urine of high-risk populations (i.e., African American) could be beneficial in determining why many of these patients have worse outcomes and are non-responsive to standard therapeutics.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...