GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Polymers, MDPI AG, Vol. 12, No. 11 ( 2020-11-04), p. 2595-
    Abstract: For the immediate detection of strong gaseous alkalis and acids, colorimetric textile sensors based on halochromic dyes are highly valuable for monitoring gas leakages. To date, colorimetric textile sensors for dual-gas detection have usually been fabricated by electrospinning methods. Although nanofibrous sensors have excellent pH sensitivity, they are difficult to use commercially because of their low durability, low productivity, and high production costs. In this study, we introduce novel textile sensors with high pH sensitivity and durability via a facile and low-cost screen-printing method. To fabricate these textiles sensors, Dye 3 and RhYK dyes were both incorporated into a polyester fabric. The fabricated sensors exhibited high detection rates ( 〈 10 s) and distinctive color changes under alkaline or acidic conditions, even at low gas concentrations. Furthermore, the fabricated sensors showed an outstanding durability and reversibility after washing and drying and were confirmed to contain limited amounts of hazardous materials. Thus, our results show that the fabricated textile sensors could be used in safety apparel that changes its color in the presence of harmful gases.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Polymers, MDPI AG, Vol. 12, No. 5 ( 2020-05-02), p. 1044-
    Abstract: : A highly porous nonwoven thermoplastic polyurethane (TPU)/Polypropylene (PP) triboelectric nanogenerator (N-TENG) was developed. To fabricate the triboelectric layers, the TPU nanofiber was directly electrospun onto the nonwoven PP at different basis weights (15, 30, and 50 g/m2). The surface morphologies and porosities of the nonwoven PP and TPU nanofiber mats were characterized by field-emission scanning electron microscopy and porosimetry. The triboelectric performance of the nonwoven TPU/PP based TENG was found to improve with an increase in the basis weight of nonwoven PP. The maximum output voltage and current of the TPU/PP N-TENG with 50% PP basis weight reached 110.18 ± 6.06 V and 7.28 ± 0.67 µA, respectively, due to high air volume of nonwoven without spacers. In order to demonstrate its practical application as a generator, a TPU/PP N-TENG-attached insole for footwear was fabricated. The N-TENG was used as a power source to turn on 57 light-emitting diodes through human-walking, without any charging system. Thus, owing to its excellent energy-conversion performance, simple fabrication process, and low cost, the breathable and wearable nonwoven fiber-based TENG is suitable for large-scale production, to be used in wearable devices.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Polymers, MDPI AG, Vol. 12, No. 3 ( 2020-03-13), p. 658-
    Abstract: The combination of the triboelectric effect and static electricity as a triboelectric nanogenerator (TENG) has been extensively studied. TENGs using nanofibers have advantages such as high surface roughness, porous structure, and ease of production by electrospinning; however, their shortcomings include high-cost, limited yield, and poor mechanical properties. Microfibers are produced on mass scale at low cost; they are solvent-free, their thickness can be easily controlled, and they have relatively better mechanical properties than nanofiber webs. Herein, a nano- and micro-fiber-based TENG (NMF-TENG) was fabricated using a nylon 6 nanofiber mat and melt blown nonwoven polypropylene (PP) as triboelectric layers. Hence, the advantages of nanofibers and microfibers are maintained and mutually complemented. The NMF-TENG was manufactured by electrospinning nylon 6 on the nonwoven PP, and then attaching Ni coated fabric electrodes on the top and bottom of the triboelectric layers. The morphology, porosity, pore size distribution, and fiber diameters of the triboelectric layers were investigated. The triboelectric output performances were confirmed by controlling the pressure area and basis weight of the nonwoven PP. This study proposes a low-cost fabrication process of NMF-TENGs with high air-permeability, durability, and productivity, which makes them applicable to a variety of wearable electronics.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Current Oncology, MDPI AG, Vol. 28, No. 4 ( 2021-07-17), p. 2720-2730
    Abstract: Background: Herpes zoster (HZ) is strongly associated with decreased immune function, a factor of cancer development. Previous studies suggested inconsistent results regarding the association between HZ and increased cancer risk. We aimed to analyze the association between HZ and specific cancer risk. Methods: Of 134,454 patients diagnosed with HZ between 2002 and 2015, 81,993 HZ patients were matched 1:1 with non-HZ individuals by age, sex, and Charlson comorbidity index. Both groups were examined at 1, 3, and 5 years for cancer diagnosis. A Cox proportional hazard regression model was used to estimate cancer risk in both groups. The postherpetic neuralgia (PHN) and non-HZ groups were compared for specific cancer risk. Results: The HZ group showed a slightly decreased overall cancer risk compared with the non-HZ group (hazard ratio [HR] 0.94, 95% confidence interval [CI] 0.90–0.97, p = 0.002). The HRs for specific cancer risk were 0.41 (95% CI, 0.33–0.50, p 〈 0.001); 0.86 (95% CI, 0.81–0.91, p 〈 0.001); 0.87 (95% CI, 0.78–0.97, p = 0.014); 0.80 (95% CI 0.73–0.87, p 〈 0.001); 1.20 (95% CI, 1.07–1.34, p = 0.001); and 1.66 (95% CI, 1.35–2.03, p 〈 0.001) for cancers of the lips, mouth, and pharynx; digestive system; respiratory system; unknown secondary and unspecified sites; thyroid and endocrine glands; and lymphoid and hematopoietic systems, respectively. The HZ with PHN group showed higher HR for specific cancer risk, such as lymphoid and hematopoietic systems (95% CI, 1.27–2.39, p 〈 0.001). Conclusion: HZ was associated with increased or decreased incidence of specific cancers. PHN further increased the risk of developing certain cancers in HZ patients.
    Type of Medium: Online Resource
    ISSN: 1718-7729
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2270777-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Life, MDPI AG, Vol. 11, No. 11 ( 2021-11-17), p. 1248-
    Abstract: Neural stem cells (NSCs) are multipotent cells capable of self-renewal and differentiation into different nervous system cells. Mouse NSCs (mNSCs) are useful tools for studying neurogenesis and the therapeutic applications of neurodegenerative diseases in mammals. Formyl peptide receptor 2 (FPR2), expressed in the central nervous system and brain, is involved in the migration and differentiation of murine embryonic-derived NSCs. In this study, we explored the effect of FPR2 activation in adult mNSCs using the synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met-NH2 (WKYMVm), an agonist of FPR2. After isolation of NSCs from the subventricular zone of the adult mouse brain, they were cultured in two culture systems—neurospheres or adherent monolayers—to demonstrate the expression of NSC markers and phenotypes. Under different conditions, mNSCs differentiated into neurons and glial cells such as astrocytes, microglia, and oligodendrocytes. Treatment with WKYMVm stimulated the chemotactic migration of mNSCs. Moreover, WKYMVm-treated mNSCs were found to promote proliferation; this result was confirmed by the expansion of mNSCs in Matrigel and the increase in the number of Ki67-positive cells. Incubation of mNSCs with WKYMVm in a supplement-free medium enhanced the survival rate of the mNSCs. Together, these results suggest that WKYMVm-induced activation of FPR2 stimulates cellular responses in adult NSCs.
    Type of Medium: Online Resource
    ISSN: 2075-1729
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662250-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 2 ( 2022-01-17), p. 1006-
    Abstract: Insulin in the brain is a well-known critical factor in neuro-development and regulation of adult neurogenesis in the hippocampus. The abnormality of brain insulin signaling is associated with the aging process and altered brain plasticity, and could promote neurodegeneration in the late stage of Alzheimer’s disease (AD). The precise molecular mechanism of the relationship between insulin resistance and AD remains unclear. The development of phosphoproteomics has advanced our knowledge of phosphorylation-mediated signaling networks and could elucidate the molecular mechanisms of certain pathological conditions. Here, we applied a reliable phosphoproteomic approach to Neuro2a (N2a) cells to identify their molecular features under two different insulin-resistant conditions with clinical relevance: inflammation and dyslipidemia. Despite significant difference in overall phosphoproteome profiles, we found molecular signatures and biological pathways in common between two insulin-resistant conditions. These include the integrin and adenosine monophosphate-activated protein kinase pathways, and we further verified these molecular targets by subsequent biochemical analysis. Among them, the phosphorylation levels of acetyl-CoA carboxylase and Src were reduced in the brain from rodent AD model 5xFAD mice. This study provides new molecular signatures for insulin resistance in N2a cells and possible links between the molecular features of insulin resistance and AD.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Pharmaceutics, MDPI AG, Vol. 15, No. 8 ( 2023-08-10), p. 2122-
    Abstract: The purpose of this study is to evaluate the changes in physical properties and biocompatibilities caused by thermocycling of CAD/CAM restorative materials (lithium disilicate, zirconia reinforced lithium silicate, polymer-infiltrated ceramic network, resin nanoceramic, highly translucent zirconia). A total of 225 specimens were prepared (12.0 × 10.0 × 1.5 mm) and divided into three groups subjected to water storage at 37 °C for 24 h (control group), 10,000 cycles in distilled water at 5–55 °C (first aged group), and 22,000 cycles in distilled water at 5–55 °C (second aged group) [(n= 15, each]). The nanoindentation hardness and Young’s modulus (nanoindenter), surface roughness (atomic force microscopy (AFM)), surface texture (scanning electron microscopy (FE-SEM)), elemental concentration (energy dispersive spectroscopy (EDS)) and contact angle were evaluated. The morphology, proliferation and adhesion of cultured human gingival fibroblasts (HGFs) were analyzed. The data were analyzed using one-way ANOVA and Tukey’s test (p 〈 0.05). The results showed that the nanoindentation hardness and Young’s modulus were decreased after thermocycling aging. Cell viability and proliferation of the material decreased with aging except for the highly translucent zirconia. Zirconia-reinforced lithium silicate exhibited significantly lower cell viability compared to other materials. The surface roughnesses of all groups increased with aging. Cell viability and Cell adhesion were influenced by various factors, including the surface chemical composition, hydrophilicity, surface roughness, and topography.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Polymers, MDPI AG, Vol. 11, No. 9 ( 2019-09-03), p. 1443-
    Abstract: A comparative study of the electrical performance of triboelectric nanogenerators (TENGs) with plain- and 2/1 twill-woven cotton textiles was conducted. Furthermore, the microstructures of the cotton fiber surfaces were examined to understand the fundamental mechanical interaction among the cotton fibers in the TENGs. The TENG with 2/1 twill-woven cotton textiles exhibited higher output voltages compared to that with plain-woven cotton textiles. The difference in the output voltage between the two types of TENGs resulted from the difference in triboelectric charge generation between the constituent cotton textiles. The higher output voltage of the TENG with 2/1 twill-woven cotton textiles was attributed to the higher density in triboelectric interactions among the cotton fiber molecules.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 19 ( 2021-09-23), p. 10234-
    Abstract: Spinal muscular atrophy (SMA) is caused by homozygous survival of motor neurons 1 (SMN1) gene deletion, leaving a duplicate gene, SMN2, as the sole source of SMN protein. However, a defect in SMN2 splicing, involving exon 7 skipping, results in a low level of functional SMN protein. Therefore, the upregulation of SMN protein expression from the SMN2 gene is generally considered to be one of the best therapeutic strategies to treat SMA. Most of the SMA drug discovery is based on synthetic compounds, and very few natural compounds have been explored thus far. Here, we performed an unbiased mechanism-independent and image-based screen of a library of microbial metabolites in SMA fibroblasts using an SMN-specific immunoassay. In doing so, we identified brefeldin A (BFA), a well-known inhibitor of ER-Golgi protein trafficking, as a strong inducer of SMN protein. The profound increase in SMN protein was attributed to, in part, the rescue of the SMN2 pre-mRNA splicing defect. Intriguingly, BFA increased the intracellular calcium concentration, and the BFA-induced exon 7 inclusion of SMN2 splicing, was abrogated by the depletion of intracellular calcium and by the pharmacological inhibition of calcium/calmodulin-dependent kinases (CaMKs). Moreover, BFA considerably reduced the expression of Tra2-β and SRSF9 proteins in SMA fibroblasts and enhanced the binding of PSF and hnRNP M to an exonic splicing enhancer (ESE) of exon 7. Together, our results demonstrate a significant role for calcium and its signaling on the regulation of SMN splicing, probably through modulating the expression/activity of splicing factors.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Energies, MDPI AG, Vol. 13, No. 19 ( 2020-10-01), p. 5124-
    Abstract: It has been reported that improving electrical conductivity and maintaining stable structure during discharge/charge process are challenge for Si to be used as an anode for lithium ion batteries (LIB). To address this problem, milkweed (MW) was carbonized to prepare hollow carbon microtubes (HCMT) derived from biomass as an anode template for LIB. In order to improve electrical conductivity, various materials such as chitosan (CTS), agarose, and polyvinylidene fluoride (PVDF) are used as carbon source (C1, C2, and C3) by carbonization. Carbon coated HCMT@Si composits, HCMT@Si@C1, HCMT@Si@C1@C2, and HCMT@Si@C1@C3, have been successfully synthesized. Changes in structure and crystallinity of HCMT@Si composites were characterized by using X-ray diffraction (XRD). Specific surface area for samples was calculated by using BET (Brunauer–Emmett–Teller). Also, pore size and particle size were obtained by particle and pore size analysis system. The surface morphology was evaluated using high resolution scanning electron microscopy (HR-SEM), Field Emission transmission electron microscopy (TEM). The thermal properties of HCMT@Si composites were analyzed by thermogravimetric analysis (TGA). Our research was performed to study the synthesis and electrochemical performance of Si composite with HCMT by the carbonization of natural micro hollow milkweed to form an inner space. After carbonization at 900 °C for 2 h in N2 flow, inner diameter of HCMT obtained was about 10 μm. The electrochemical tests indicate that HCMT@Si@C1@C3 exhibits discharge capacity of 932.18 mAh/g at 0.5 A/g after 100 cycles.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...