GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancers, MDPI AG, Vol. 15, No. 3 ( 2023-01-23), p. 697-
    Abstract: Major epigenetic alterations, such as chromatin modifications, DNA methylation, and miRNA regulation, have gained greater attention and play significant roles in oncogenesis, representing a new paradigm in our understanding of cancer susceptibility. These epigenetic changes, particularly aberrant promoter hypermethylation, abnormal histone acetylation, and miRNA dysregulation, represent a set of epigenetic patterns that contribute to inappropriate gene silencing at every stage of cancer progression. Notably, the cancer epigenome possesses various HDACs and DNMTs, which participate in the histone modifications and DNA methylation. As a result, there is an unmet need for developing the epigenetic inhibitors against HDACs and DNMTs for cancer therapy. To date, several epigenetically active synthetic inhibitors of DNA methyltransferases and histone deacetylases have been developed. However, a growing body of research reports that most of these synthetic inhibitors have significant side effects and a narrow window of specificity for cancer cells. Targeting tumor epigenetics with phytocompounds that have the capacity to modulate abnormal DNA methylation, histone acetylation, and miRNAs expression is one of the evolving strategies for cancer prevention. Encouragingly, there are many bioactive phytochemicals, including organo-sulfur compounds that have been shown to alter the expression of key tumor suppressor genes, oncogenes, and oncogenic miRNAs through modulation of DNA methylation and histones in cancer. In addition to vitamins and microelements, dietary phytochemicals such as sulforaphane, PEITC, BITC, DADS, and allicin are among a growing list of naturally occurring anticancer agents that have been studied as an alternative strategy for cancer treatment and prevention. Moreover, these bioactive organo-sulfur compounds, either alone or in combination with other standard cancer drugs or phytochemicals, showed promising results against many cancers. Here, we particularly summarize and focus on the impact of specific organo-sulfur compounds on DNA methylation and histone modifications through targeting the expression of different DNMTs and HDACs that are of particular interest in cancer therapy and prevention.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Coatings, MDPI AG, Vol. 10, No. 10 ( 2020-10-01), p. 950-
    Abstract: In this work, Pani and Pani@g-C3N4 was synthesized by in situ oxidative polymerization methodology of aniline, in the presence of g-C3N4. The as prepared Pani@g-C3N4 was characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction (XRD). The morphological analysis showed well dispersed Pani in g-C3N4, as well as the coating of Pani on g-C3N4. The XRD further revealed this, and peaks of Pani as well as g-C3N4 was observed, thereby suggesting successful synthesis of the composite. The DC electrical conductivity studies under isothermal and cyclic aging conditions showed high stability of composites over 100 °C. Further, the synthesized composite material proved to be an excellent antimicrobial agent against both type i.e., gram positive Streptococcus pneumoniae and negative bacteria Escherichia coli. In the zone inhibition assay 18 ± 0.5, 16 ± 0.75 and 20 ± 0.5, 22 ± 0.5 mm zone diameter were found against E. coli and S. pneumoniae in presence of pure g-C3N4 and Pani@g-C3N4 at 50 µg concentrations, respectively. Further antimicrobial activity in the presence of sunlight in aqueous medium showed that Pani@g-C3N4 is more potent than pure g-C3N4.
    Type of Medium: Online Resource
    ISSN: 2079-6412
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662314-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancers, MDPI AG, Vol. 15, No. 2 ( 2023-01-11), p. 467-
    Abstract: Small cell undifferentiated (SCU) histology and alpha-fetoprotein (AFP) levels below 100 ng/mL have been reported as poor prognostic factors in hepatoblastoma (HB); subsequent studies reported SMARCB1 mutations in some SCU HBs confirming the diagnosis of rhabdoid tumor. The Children’s Hepatic tumors International Collaboration (CHIC) database was queried for patients with HB who had AFP levels less than 100 ng/mL at diagnosis or were historically diagnosed as SCU HBs. Seventy-three of 1605 patients in the CHIC database were originally identified as SCU HB, HB with SCU component, or HB with low AFP levels. Upon retrospective review, they were re-classified as rhabdoid tumors (n = 11), HB with SCU component (n = 41), and HB with low AFP (n = 14). Seven were excluded for erroneously low AFP levels. Overall survival was 0% for patients with rhabdoid tumors, 76% for patients with HB with SCU component, and 64% for patients with HB with AFP less than 100 ng/mL. Patients with HB with SCU component or low AFP should be assessed for SMARCB1 mutations and, if confirmed, treated as rhabdoid tumors. When rhabdoid tumors are excluded, the presence of SCU component and low AFP at diagnosis were not associated with poor prognosis in patients diagnosed with HB.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Electronics, MDPI AG, Vol. 10, No. 4 ( 2021-02-17), p. 477-
    Abstract: Electric vehicles are receiving widespread attention around the world due to their improved performance and zero carbon emissions. The effectiveness of electric vehicles depends on proper interfacing between energy storage systems and power electronics converters. However, the power delivered by energy storage systems illustrates unstable, unregulated and substantial voltage drops. To overcome these limitations, electric vehicle converters, controllers and modulation schemes are necessary to achieve a secured and reliable power transfer from energy storage systems to the electric motor. Nonetheless, electric vehicle converters and controllers have shortcomings including a large number of components, high current stress, high switching loss, slow dynamic response and computational complexity. Therefore, this review presents a detailed investigation of different electric vehicle converters highlighting topology, features, components, operation, strengths and weaknesses. Moreover, this review explores the various types of electric vehicle converter controllers and modulation techniques concerning functional capabilities, operation, benefits and drawbacks. Besides, the significance of optimization algorithms in electric vehicle converters is illustrated along with their objective functions, executions and various factors. Furthermore, this review explores the key issues and challenges of electric vehicle converters, controllers and optimizations to identify future research gaps. Finally, important and specific suggestions are delivered toward the development of an efficient converter for future sustainable electric vehicle applications.
    Type of Medium: Online Resource
    ISSN: 2079-9292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662127-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Antibiotics, MDPI AG, Vol. 12, No. 5 ( 2023-04-30), p. 835-
    Abstract: Aegle mamelons (A. marmelos) or Indian Bael leaves possess anti-cancerous and antibacterial properties and are used in the traditional medicine system for the treatment of oral infections. In the present study, the essential oil of the leaves of A. marmelos was explored for its anticancer, antioxidant, and anti-cariogenic properties. The hydro-distilled oil of A. marmelos leaves was analyzed using gas chromatography coupled with mass spectrometry (GC-MS). Monoterpene limonene (63.71%) was found to have the highest percentage after trans-2-Hydroxy-1,8-cineole and p-Menth-2,8-dien-1-ol. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was used to investigate the anticancer activity of the extracted oil against human oral epidermal carcinoma (KB), and the results showed significantly higher (**** p 〈 0.0001) anticancer activity (45.89%) in the doxorubicin (47.87%) when compared to the normal control. The antioxidant activity of the essential oil was evaluated using methods of DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)). The results showed a significant (*** p 〈 0.001) percentage of inhibition of DPPH-induced free radical (70.02 ± 1.6%) and ABTS-induced free radical (70.7 ± 1.32%) at 100 µg/mL with IC50, 72.51 and 67.33 µg/mL, respectively, comparatively lower than standard compound ascorbic acid. The results of the molecular docking study of the significant compound limonene with the receptors tyrosinase and tyrosine kinase 2 supported the in vitro antioxidant potential. The anti-cariogenic activity was evaluated against Streptococcus mutans (S. mutans). Results showed a significant minimum inhibitor concentration of 0.25 mg/mL and the killing time was achieved at 3 to 6 h. The molecular-docking study showed that limonene inhibits the surface receptors of the S. mutans c-terminal domain and CviR protein. The study found that A. marmelos leaves have potential anti-carcinoma, antioxidant, and anti-cariogenic effects on human oral epidermal health, making them a valuable natural therapeutic agent for managing oral cancer and infections.
    Type of Medium: Online Resource
    ISSN: 2079-6382
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2681345-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Molecules, MDPI AG, Vol. 27, No. 13 ( 2022-06-21), p. 3994-
    Abstract: For many decades, the thiazole moiety has been an important heterocycle in the world of chemistry. The thiazole ring consists of sulfur and nitrogen in such a fashion that the pi (π) electrons are free to move from one bond to other bonds rendering aromatic ring properties. On account of its aromaticity, the ring has many reactive positions where donor–acceptor, nucleophilic, oxidation reactions, etc., may take place. Molecules containing a thiazole ring, when entering physiological systems, behave unpredictably and reset the system differently. These molecules may activate/stop the biochemical pathways and enzymes or stimulate/block the receptors in the biological systems. Therefore, medicinal chemists have been focusing their efforts on thiazole-bearing compounds in order to develop novel therapeutic agents for a variety of pathological conditions. This review attempts to inform the readers on three major classes of thiazole-bearing molecules: Thiazoles as treatment drugs, thiazoles in clinical trials, and thiazoles in preclinical and developmental stages. A compilation of preclinical and developmental thiazole-bearing molecules is presented, focusing on their brief synthetic description and preclinical studies relating to structure-based activity analysis. The authors expect that the current review may succeed in drawing the attention of medicinal chemists to finding new leads, which may later be translated into new drugs.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 8 ( 2023-04-19), p. 7475-
    Abstract: Autism spectrum disorder (ASD) is a common and severe neurodevelopmental disorder in early childhood, defined as social and communication deficits and repetitive and stereotypic behaviours. The aetiology is unknown in most cases. However, several studies have identified immune dysregulation as potentially promoting ASD. Among the numerous immunological findings in ASD, reports of increased pro-inflammatory markers remain the most consistently observed. C-C chemokine receptor type 1 (CCR1) activation is pro-inflammatory in several neurological disorders. Previous evidence has implied that the expression of chemokine receptors, inflammatory mediators, and transcription factors play a pivotal role in several neuroinflammatory disorders. There have also been reports on the association between increased levels of proinflammatory cytokines and ASD. In this study, we aimed to investigate the possible involvement of CCR1, inflammatory mediators, and transcription factor expression in CD40+ cells in ASD compared to typically developing controls (TDC). Flow cytometry analysis was used to determine the levels of CCR1-, IFN-γ-, T-box transcription factor (T-bet-), IL-17A-, retinoid-related orphan receptor gamma t (RORγt-), IL-22- and TNF-α-expressing CD40 cells in PBMCs in children with ASD and the TDC group. We further examined the mRNA and protein expression levels of CCR1 using real-time PCR and western blot analysis. Our results revealed that children with ASD had significantly increased numbers of CD40+CCR1+, CD40+IFN-γ+, CD40+T-bet+, CD40+IL-17A+, CD40+RORγt+, CD4+IL-22+, and CD40+TNF-α+ cells compared with the TDC group. Furthermore, children with ASD had higher CCR1 mRNA and protein expression levels than those in the TDC group. These results indicate that CCR1, inflammatory mediators, and transcription factors expressed in CD40 cells play vital roles in disease progression.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Children, MDPI AG, Vol. 8, No. 2 ( 2021-02-06), p. 116-
    Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral abnormalities such as impairments in social function and deficits in communication. The etiology of autism is unknown in most cases, but many studies have pointed towards the immune system as a causative agent in autism. Specific studies implicated lymphocytes, natural killer (NK) cells, monocytes, cytokines, and specific transcription factors in the development of ASD. The protein Ki-67 is n expressed in the proliferating cells and is used as a tool in several disorders. Ki-67 plays a crucial role in many neurological diseases. However, Ki-67 role in ASD is not fully understood. In this study, we investigated the possible role of Ki-67 expression in autistic children. We compared Ki-67 production in CD3+, CD4+, CD8+, CXCR4+, CXCR7+, CD45R+, HLA-DR+, GATA3+, Helios+, and FOXP3+ peripheral blood mononuclear cells (PBMCs) in autistic children to typically developing (TD) controls using immunofluorescence staining. We also determined Ki-67 mRNA levels in PBMCs using RT–PCR. The results revealed that autistic children had significantly increased numbers of CD3+Ki-67+, CD4+Ki-67+, CD8+Ki-67+, CXCR4+Ki-67+, CXCR7+Ki-67+, CD45R+Ki-67+, HLA-DR+Ki-67+, CXCR4+GATA3+, GATA3+Ki-67+ cells and decreased Helios+Ki-67+ and FOXP3+Ki-67+ cells compared with TD controls. In addition, the autistic children showed upregulation of Ki-67 mRNA levels compared with TD controls. Further studies need to be carried out to assess the exact role of Ki-67 and its therapeutic potential in ASD.
    Type of Medium: Online Resource
    ISSN: 2227-9067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2732685-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Life, MDPI AG, Vol. 12, No. 7 ( 2022-07-04), p. 990-
    Abstract: Camel milk (CM) constitutes an important dietary source in the hot and arid regions of the world. CM is a colloidal mixture of nutritional components (proteins, carbohydrates, lipids, vitamins, and minerals) and non-nutritional components (hormones, growth factors, cytokines, immunoglobulins, and exosomes). Although the majority of previous research has been focused on the nutritional components of CM; there has been immense interest in the non-nutritional components in the recent past. Reckoning with these, in this review, we have provided a glimpse of the recent trends in CM research endeavors and attempted to provide our perspective on the therapeutic efficacy of the nutritional and non-nutritional components of CM. Interestingly, with concerted efforts from the research fraternities, convincing evidence for the better understanding of the claimed traditional health benefits of CM can be foreseen with great enthusiasm and is indeed eagerly anticipated.
    Type of Medium: Online Resource
    ISSN: 2075-1729
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662250-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Molecules, MDPI AG, Vol. 27, No. 1 ( 2021-12-28), p. 168-
    Abstract: Baricitinib (BTB) is an orally administered Janus kinase inhibitor, therapeutically used for the treatment of rheumatoid arthritis. Recently it has also been approved for the treatment of COVID-19 infection. In this study, four different BTB-loaded lipids (stearin)-polymer (Poly(d,l-lactide-co-glycolide)) hybrid nanoparticles (B-PLN1 to B-PLN4) were prepared by the single-step nanoprecipitation method. Next, they were characterised in terms of physicochemical properties such as particle size, zeta potential (ζP), polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Based on preliminary evaluation, the B-PLN4 was regarded as the optimised formulation with particle size (272 ± 7.6 nm), PDI (0.225), ζP (−36.5 ± 3.1 mV), %EE (71.6 ± 1.5%) and %DL (2.87 ± 0.42%). This formulation (B-PLN4) was further assessed concerning morphology, in vitro release, and in vivo pharmacokinetic studies in rats. The in vitro release profile exhibited a sustained release pattern well-fitted by the Korsmeyer–Peppas kinetic model (R2 = 0.879). The in vivo pharmacokinetic data showed an enhancement (2.92 times more) in bioavailability in comparison to the normal suspension of pure BTB. These data concluded that the formulated lipid-polymer hybrid nanoparticles could be a promising drug delivery option to enhance the bioavailability of BTB. Overall, this study provides a scientific basis for future studies on the entrapment efficiency of lipid-polymer hybrid systems as promising carriers for overcoming pharmacokinetic limitations.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...