GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Inorganics, MDPI AG, Vol. 11, No. 3 ( 2023-03-21), p. 134-
    Abstract: Cd-doped BiFeO3 powders, with varying doping concentrations of Cd (Bi(1−x)CdxFeO3, where x = 0–0.3), were prepared through a facile chemical co-precipitation method and calcinated at 550 °C in the air. The BiFeO3 has a rhombohedral crystal structure, which changes to an orthorhombic crystal structure with an increase in Cd doping. The presence of dopant has also altered the bandgap of material suppressing it from 2.95 eV to 2.51 eV, improving the visible light absorption. Vibrating sample magnetometry (VSM) confirmed stronger ferromagnetic character for Bi0.7Cd0.3FeO3 with a coercivity of 250 Oe, and remnant magnetization was 0.15 emu/g, which is because of the misalignment of the two sublattices of perovskite structure after doping resulting in the imbalanced magnetic moment giving rise to net nonzero magnetic behavior. The particle size reduction is observed with an increase in the doping concentration of Cd.
    Type of Medium: Online Resource
    ISSN: 2304-6740
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2735043-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Symmetry, MDPI AG, Vol. 15, No. 1 ( 2023-01-03), p. 143-
    Abstract: Entropy is a thermodynamic function in physics that measures the randomness and disorder of molecules in a particular system or process based on the diversity of configurations that molecules might take. Distance-based entropy is used to address a wide range of problems in the domains of mathematics, biology, chemical graph theory, organic and inorganic chemistry, and other disciplines. We explain the basic applications of distance-based entropy to chemical phenomena. These applications include signal processing, structural studies on crystals, molecular ensembles, and quantifying the chemical and electrical structures of molecules. In this study, we examine the characterisation of polyphenylenes and boron (B12) using a line of symmetry. Our ability to quickly ascertain the valences of each atom, and the total number of atom bonds is made possible by the symmetrical chemical structures of polyphenylenes and boron B12. By constructing these structures with degree-based indices, namely the K Banhatti indices, ReZG1-index, ReZG2-index, and ReZG3-index, we are able to determine their respective entropies.
    Type of Medium: Online Resource
    ISSN: 2073-8994
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518382-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nanomaterials, MDPI AG, Vol. 12, No. 22 ( 2022-11-20), p. 4084-
    Abstract: This study is aimed to explore the magneto-hydrodynamic Carreau fluid flow over a stretching/shrinking surface with a convectively heated boundary. Temperature-dependent variable thermophysical properties are utilized to formulate the problem. The flow governing equations are obtained with boundary layer approximation and constitutive relation of the Carreau fluid. The shooting method is utilized to obtain graphical and numeric outcomes. Additionally, initial guesses are generated with the help of Newton’s method. The effect of Weissenberg number, Magnetization, stretching ratio, Prandtl number, suction/blowing parameter, and Lewis number is obtained on velocity, temperature and species continuity profile and analyzed. Shear stress rates and Nusselt number outcomes under body forces influences are present in tabulated data and discussed. It is observed that in absence of magnetization force, B = 0 and strong mass suction 5≤S≤7.5 effect high rates of Nusselt number is obtained. It is concluded that under the influence of power law index and non-linearity parameter maximum heat transfer and reduced shear stress rates are obtained.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nanomaterials, MDPI AG, Vol. 12, No. 23 ( 2022-11-24), p. 4177-
    Abstract: This research investigates the two different hybrid nanofluid flows between two parallel plates placed at two different heights, y0 and yh, respectively. Water-based hybrid nanofluids are obtained by using Al2O3, TiO2 and Cu as nanoparticles, respectively. The upper-level plate is fixed, while the lower-level plate is stretchable. The fluid rotates along the y-axis. The governing equations of momentum, energy and concentration are transformed into partial differential equations by using similarity transformations. These transformed equations are grasped numerically at MATLAB by using the boundary value problem technique. The influence of different parameters are presented through graphs. The numerical outcomes for rotation, Nusselt, Prandtl, and Schmidt numbers are obtained in the form of tables. The heat transfer rate increases by augmentation in the thermophoresis parameter, while it decays by increasing the Reynolds number. Oxide nanoparticles hybrid nanofluid proved more efficient as compared to mixed nanoparticles hybrid nanofluid. This research suggests using oxide nanoparticles for good heat transfer.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 20, No. 9 ( 2019-05-09), p. 2291-
    Abstract: Lin-28 is an RNA-binding protein that is known for its role in promoting the pluripotency of stem cells. In the present study, Arabian camel Lin-28 (cLin-28) cDNA was identified and analyzed. Full length cLin-28 mRNA was obtained using the reverse transcription polymerase chain reaction (RT-PCR). It was shown to be 715 bp in length, and the open reading frame (ORF) encoded 205 amino acids. The molecular weight and theoretical isoelectric point (pI) of the cLin-28 protein were predicted to be 22.389 kDa and 8.50, respectively. Results from the bioinformatics analysis revealed that cLin-28 has two main domains: an N-terminal cold-shock domain (CSD) and a C-terminal pair of retroviral-type Cysteine3Histidine (CCHC) zinc fingers. Sequence similarity and phylogenetic analysis showed that the cLin-28 protein is grouped together Camelus bactrianus and Bos taurus. Quantitative real-time PCR (qPCR) analysis showed that cLin-28 mRNA is highly expressed in the lung, heart, liver, and esophageal tissues. Peptide mass fingerprint-mass spectrometry (PMF-MS) analysis of the purified cLin-28 protein confirmed the identity of this protein. Comparing the modeled 3D structure of cLin-28 protein with the available protein 3D structure of the human Lin-28 protein confirmed the presence of CSD and retroviral-type CCHC zinc fingers, and high similarities were noted between the two structures by using super secondary structure prediction.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Applied Sciences, MDPI AG, Vol. 11, No. 23 ( 2021-11-25), p. 11203-
    Abstract: The main purpose of this research is to scrutinize the heat and mass transfer in the Casson hybrid nanofluid flow over an extending cylinder in the presence of a magnetic dipole and double stratification. The nanofluid contained chemically reactive hybrid nanoparticles (Ag, MgO) in the conventional fluids (water). The effects of viscous dissipation, radiation, and concentration stratification were taken into consideration. In the presence of gyrotactic microorganisms and the Non-Ficks Model, the flow was induced. Incorporating microorganisms into a hybrid nanofluid flow is thought to help stabilize the dispersed nanoparticles. For viscosity and thermal conductivity, experimental relations with related dependence on nanoparticle concentration were used. To acquire the nonlinear model from the boundary layer set of equations, suitable similarity transformations were employed. The built-in function bvp4c of Matlab software was utilized to solve the transformed equation numerically. The graphical results were obtained for temperature, velocity, concentration, and microorganism distribution for various parameters. The numerical amounts of drag friction, heat transport rate, and motile density number for different parameters are presented through tables. It is seen that the fluid velocity is augmented by the increase of the curvature parameter, while a decrease occurs in the fluid velocity with an increase in the magnetic and slips parameters. The comparison of the present study with previously available studies is discussed, which shows a good agreement with published results.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecules, MDPI AG, Vol. 28, No. 1 ( 2022-12-26), p. 201-
    Abstract: A topological index as a graph parameter was obtained mathematically from the graph’s topological structure. These indices are useful for measuring the various chemical characteristics of chemical compounds in the chemical graph theory. The number of atoms that surround an atom in the molecular structure of a chemical compound determines its valency. A significant number of valency-based molecular invariants have been proposed, which connect various physicochemical aspects of chemical compounds, such as vapour pressure, stability, elastic energy, and numerous others. Molecules are linked with numerical values in a molecular network, and topological indices are a term for these values. In theoretical chemistry, topological indices are frequently used to simulate the physicochemical characteristics of chemical molecules. Zagreb indices are commonly employed by mathematicians to determine the strain energy, melting point, boiling temperature, distortion, and stability of a chemical compound. The purpose of this study is to look at valency-based molecular invariants for SiO4 embedded in a silicate chain under various conditions. To obtain the outcomes, the approach of atom–bond partitioning according to atom valences was applied by using the application of spectral graph theory, and we obtained different tables of atom—bond partitions of SiO4. We obtained exact values of valency-based molecular invariants, notably the first Zagreb, the second Zagreb, the hyper-Zagreb, the modified Zagreb, the enhanced Zagreb, and the redefined Zagreb (first, second, and third). We also provide a graphical depiction of the results that explains the reliance of topological indices on the specified polynomial structure parameters.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Energies, MDPI AG, Vol. 14, No. 23 ( 2021-12-03), p. 8115-
    Abstract: The numerical, analytical, theoretical and experimental study of thermal transport is an active field of research due to its enormous applications and use in numerous systems. This report covers the impacts of thermal transport on pseudo-plastic material past over a horizontal, heated and stretched porous sheet. Modeling of energy conservation is based upon a generalized heat flux model along with a heat generation/absorption factor. The modeled phenomenon is derived in the Cartesian coordinate system under the usual boundary-layer approach proposed by Prandtl, which removes the complexity of the problem. The modeled rheology is obtained in the form of coupled, nonlinear PDEs. These derived PDEs are converted into ODEs with the engagement of similarity transformation. Afterwards, converted ODEs containing some emerging parameters have been approximated numerically with a powerful and effective scheme, namely the finite element approach. The obtained results are compared with the published findings as a limiting case of current research, and an excellent agreement in the obtained solution was found, which guarantees the effectiveness of the used methodology. Furthermore, it is recommended that the finite element approach is a good method among other existing methods and can be effectively applied to nonlinear problems arising in the mathematical modeling of different phenomenon.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Axioms Vol. 11, No. 11 ( 2022-10-24), p. 585-
    In: Axioms, MDPI AG, Vol. 11, No. 11 ( 2022-10-24), p. 585-
    Abstract: The harvested logistic model with a slow variation in coefficients has been considered. Two cases, which depend on the harvest rate, were identified. The first one is when the harvest is subcritical, where the population evolves to an equilibrium. The other is supercritical harvesting, where the population decreases to zero at finite times. The single analytic approximate expression, which is capable of describing both harvesting cases, is readily and explicitly obtained using the multi-time scaling method together with the perturbation approach. This solution fits for a wide range of coefficient values. In addition, such an expression is validated by utilizing numerical computations, which are obtained by using the fourth-order Runge–Kutta technique. Finally, the comparison shows a very good agreement between the two methods.
    Type of Medium: Online Resource
    ISSN: 2075-1680
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661511-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Symmetry, MDPI AG, Vol. 14, No. 8 ( 2022-08-15), p. 1694-
    Abstract: This article explores the application of the reduced differential transform method (RDTM) for the computational solutions of two fractional-order cancer tumor models in the Caputo sense: the model based on cancer chemotherapeutic effects which explain the relation between chemotherapeutic drugs, tumor cells, normal cells, and immune cells using a fractional partial differential equations, and the model that describes the different cases of killing rate K of cancer cells (the killing percentage of cancer cells K (I) is dependent on the number of cells, (II) is a function of time only, and (III) is a function of space only). The solutions are presented using Mathematica software as a convergent power series with elegantly computed terms using the suggested technique. The proposed method gives new series form results for various values of gamma. To clarify the complexity of the models, we plot the two- and three-dimensional and contour graphics of the obtained solutions at varied values of fractional-order gamma and the selected system parameters. The solutions are analyzed with fractional and reduced differential transform methods to obtain an idea of invariance regarding the computed solution of the designed mathematical model. The obtained results demonstrate the efficiency and preciseness of the proposed method to achieve a better understanding of chemotherapy effects. It is observed that chemotherapy drugs boost immunity against the specific cancer by decreasing the number of tumor cells, and the killing rate K of cancerous cells depend on the cells concentration.
    Type of Medium: Online Resource
    ISSN: 2073-8994
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518382-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...