GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
Material
Publisher
  • MDPI AG  (2)
Language
Years
  • 1
    In: Membranes, MDPI AG, Vol. 11, No. 11 ( 2021-11-12), p. 872-
    Abstract: Air bearing has been widely applied in ultra-precision machine tools, aerospace and other fields. The restrictor of the porous material is the key component in air bearings, but its performance is limited by the machining accuracy. A combination of optimization design and material modification of the porous alumina ceramic membrane is proposed to improve performance within an air bearing. Porous alumina ceramics were prepared by adding a pore-forming agent and performing solid-phase sintering at 1600 °C for 3 h, using 95-Al2O3 as raw material and polystyrene microspheres with different particle sizes as the pore-forming agent. With 20 wt.% of PS50, the optimum porous alumina ceramic membranes achieved a density of 3.2 g/cm3, a porosity of 11.8% and a bending strength of 150.4 MPa. Then, the sintered samples were processed into restrictors with a diameter of 40 mm and a thickness of 5 mm. After the restrictors were bonded to aluminum shells for the air bearing, both experimental and simulation work was carried out to verify the designed air bearing. Simulation results showed that the load capacity increased from 94 N to 523 N when the porosity increased from 5% to 25% at a fixed gas supply pressure of 0.5 MPa and a fixed gas film thickness of 25 μm. When the gas film thickness and porosity were fixed at 100 μm and 11.8%, respectively, the load capacity increased from 8.6 N to 40.8 N with the gas supply pressure having been increased from 0.1 MPa to 0.5 MPa. Both experimental and simulation results successfully demonstrated the stability and effectiveness of the proposed method. The porosity is an important factor for improving the performance of an air bearing, and it can be optimized to enhance the bearing’s stability and load capacity.
    Type of Medium: Online Resource
    ISSN: 2077-0375
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2614641-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Membranes, MDPI AG, Vol. 12, No. 4 ( 2022-03-31), p. 390-
    Abstract: The single-channel Al2O3-based porous ceramic membrane tubes (PCMT) were prepared with different grain size of Al2O3 powders by extrusion molding process, combing the traditional solid-phase sintering method. The effects of raw grain size and sintering temperature on the microstructure, phase structure, density, and porosity were investigated. The results revealed that with further increase in sintering temperature, the density of porous ceramics increases, while the porosity decreases, and the pore size decreases slightly. The pore size and porosity of porous ceramics increase with the increase in raw grain size, while the density decreases. Future, in order to study the water filtration of PCMT, the effect of porosity on the pressure distribution and flow velocity different cross-sectional areas with constant feed mass flow was analyzed using Fluent 19.0. It was found that an increase in the porosity from 30% to 45% with constant feed mass flow influenced transmembrane pressure, that varied from 216.06 kPa to 42.28 kPa, while the velocity change at the outlet was not obvious. Besides, it was observed that the surface pressure is almost constant along the radial direction of the pipe, and the velocity of water in the PCMT is increasing with the decreasing of distance to the outlet. It was also verified that the porosity being 39.64%, caused transmembrane pressure reaching to 77.83 kPa and maximum velocity of 2.301 m/s. These simulation and experimental results showed that the PCMT have good potential for water filtration.
    Type of Medium: Online Resource
    ISSN: 2077-0375
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2614641-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...