GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (5)
Material
Publisher
  • MDPI AG  (5)
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Sustainability Vol. 12, No. 17 ( 2020-08-27), p. 6971-
    In: Sustainability, MDPI AG, Vol. 12, No. 17 ( 2020-08-27), p. 6971-
    Abstract: Concrete, as the world’s most implemented construction material, is increasingly being used because of the rapid development of industrialization and urbanization. Limited resources and progressive depravation of the environment are forcing scientific efforts to seek alternative and effective materials from large amounts of natural resources as additives in the partial replacement of cement. Cement is a main constituent of concrete. To solve and minimize environmental issues, research works attempting to employ the wide availability of agricultural wastes, such as sugar cane bagasse, rice husk, sugar cane straw, and palm oil fuel, among others, into cement, and to finally bring sustainable and environmentally friendly properties to concrete are being examined. Agro-waste materials are crushed into fine and coarse aggregates or are burnt into ash, and are then mixed with cement, which is known as agro-cement. The replacement of aggregates, either partially or fully, is also deemed as a sustainable material in construction. This paper mainly reviews the current research on agro-cement that has been researched and applied for the enhancement of the strength and durability of concrete. It further summarizes the relevant knowledge and techniques, while providing optimal parameters for applying agricultural wastes in concrete.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Atmosphere Vol. 11, No. 9 ( 2020-08-28), p. 919-
    In: Atmosphere, MDPI AG, Vol. 11, No. 9 ( 2020-08-28), p. 919-
    Abstract: Microbes are widespread and have been much more studied in recent years. In this review, we describe detailed information on airborne microbes that commonly originate from soil and water through liquid–air and soil–air interface. The common bacteria and fungi in the atmosphere are the phyla of Firmicutes, Proteobacteria, Bacteroides, Actinobacteria, Cyanobacteria and Ascomycota, Basidiomycota, Chytridiomycota, Rozellomycota that include most pathogens leading to several health problems. In addition, the stability of microbial community structure in bioaerosols could be affected by many factors and some special weather conditions like dust events even can transport foreign pathogens to other regions, affecting human health. Such environments are common for a particular place and affect the nature and interaction of airborne microbes with them. For instance, meteorological factors, haze and foggy days greatly influence the concentration and abundance of airborne microbes. However, as microorganisms in the atmosphere are attached on particulate matters (PM), the high concentration of chemical pollutants in PM tends to restrain the growth of microbes, especially gathering atmospheric pollutants in heavy haze days. Moreover, moderate haze concentration and/or common chemical components could provide suitable microenvironments and nutrition for airborne microorganism survival. In summary, the study reviews much information and characteristics of airborne microbes for further study.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Microorganisms Vol. 7, No. 12 ( 2019-12-13), p. 697-
    In: Microorganisms, MDPI AG, Vol. 7, No. 12 ( 2019-12-13), p. 697-
    Abstract: The global energy crisis and heavy metal pollution are the common problems of the world. It is noted that the microbial fuel cell (MFC) has been developed as a promising technique for sustainable energy production and simultaneously coupled with the remediation of heavy metals from water and soil. This paper reviewed the performances of MFCs for heavy metal removal from soil and water. Electrochemical and microbial biocatalytic reactions synergistically resulted in power generation and the high removal efficiencies of several heavy metals in wastewater, such as copper, hexavalent chromium, mercury, silver, thallium. The coupling system of MFCs and microbial electrolysis cells (MECs) successfully reduced cadmium and lead without external energy input. Moreover, the effects of pH and electrode materials on the MFCs in water were discussed. In addition, the remediation of heavy metal-contaminated soil by MFCs were summarized, noting that plant-MFC performed very well in the heavy metal removal.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2720891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Sustainability Vol. 12, No. 7 ( 2020-03-27), p. 2652-
    In: Sustainability, MDPI AG, Vol. 12, No. 7 ( 2020-03-27), p. 2652-
    Abstract: Wasps are a group of social insects that build a house, known as a nest, from locally available building materials cemented by their saliva and secretions. Similar to termite nests, there could be many beneficiary bacteria present in their house that can play an important part in maintaining sustainability in soil ecosystems. Thus, the present study was initiated with a physico-chemical characterization of wasp nests collected from residential and forest zones, followed by unconfined compressive strength (UCS) and X-ray diffraction (XRD) analysis to identify major associated minerals. Further, MiSeq Illumina sequencing of the 16S rRNA gene (V3–V4 regions) was carried out to analyze complete bacterial community composition of wasp nests. The resulting data showed a dominance of Actinobacteria followed by Proteobacteria in both nests. Kaistobacter and Phycicoccus were the dominant genera in each type of wasp nest. It was concluded that wasp nests are an abundant source to isolate bacteria that can potentially be helpful in soil biogeochemical cycling and fertility, antibiotics production and bioremediation.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  International Journal of Molecular Sciences Vol. 21, No. 6 ( 2020-03-20), p. 2152-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 6 ( 2020-03-20), p. 2152-
    Abstract: Corrosion influenced by microbes, commonly known as microbiologically induced corrosion (MIC), is associated with biofilm, which has been one of the problems in the industry. The damages of industrial equipment or infrastructures due to corrosion lead to large economic and environmental problems. Synthetic chemical biocides are now commonly used to prevent corrosion, but most of them are not effective against the biofilms, and they are toxic and not degradable. Biocides easily kill corrosive bacteria, which are as the planktonic and sessile population, but they are not effective against biofilm. New antimicrobial and eco-friendly substances are now being developed. Biosurfactants are proved to be one of the best eco-friendly anticorrosion substances to inhibit the biocorrosion process and protect materials against corrosion. Biosurfactants have recently became one of the important products of bioeconomy with multiplying applications, while there is scare knowledge on their using in biocorrosion treatment. In this review, the recent findings on the application of biosurfactants as eco-friendly and innovative biocides against biocorrosion are highlighted.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...