GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Genes, MDPI AG, Vol. 14, No. 5 ( 2023-05-12), p. 1070-
    Abstract: The ability of various pests and diseases to adapt to a single plant resistance gene over time leads to loss of resistance in transgenic rice. Therefore, introduction of different pest and disease resistance genes is critical for successful cultivation of transgenic rice strains with broad-spectrum resistance to multiple pathogens. Here, we produced resistance rice lines with multiple, stacked resistance genes by stacking breeding and comprehensively evaluated their resistance to Chilo suppressalis (striped rice stemborer), Magnaporthe oryzae (rice blast), and Nilaparvata lugens (brown planthopper) in a pesticide-free environment. CRY1C and CRY2A are exogenous genes from Bacillus thuringiensis. Pib, Pikm, and Bph29 are natural genes in rice. CH121TJH was introduced into CRY 1C, Pib, Pikm, and Bph29. CH891TJH and R205XTJH were introduced into CRY 2A, Pib, Pikm, and Bph29. Compared with those observed in their recurrent parents, CH121TJH significantly increased the mortality of borers. The other two lines CH891TJH and R205XTJH are the same result. Three lines introduction of Pib and Pikm significantly reduced the area of rice blast lesions, and introduction of Bph29 significantly reduced seedling mortality from N. lugens. Introduction of the exogenous genes had relatively few effects on agronomic and yield traits of the original parents. These findings suggest that stacking of rice resistance genes through molecular marker-assisted backcross breeding can confer broad spectrum and multiple resistance in differently genetic backgrounds.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Agronomy, MDPI AG, Vol. 13, No. 3 ( 2023-03-09), p. 800-
    Abstract: Cadmium (Cd) pollution and uptake into the grains of developing rice plants represent a major threat to human health. Studies of specific genes can offer new insights into the functional roles of particular genes, highlighting candidate alleles that can be leveraged as DNA markers. Accordingly, the identification of novel Cd-related traits and sequence variants can provide new molecular markers for Cd resistance in rice. In the present study, a genetic diversity analysis was carried out on 85 rice varieties exhibiting varied Cd accumulation, and 436 single polymorphic sites (SNP) corresponding to 43 haplotypes were detected across 12 Cd-associated genes (CAL1, OsCADT1, Oscd1, OsHMA4, OsHMA9, OsNRAMP1, OsNRAMP2, OsNRAMP5, OsHMA2, OsHSMA3, OsPCR1, and OsABCG43). By utilizing the information of the SNPs, 85 rice varieties was classified the into 2 clusters with different source categories and Cd contents. Among the variants, 45 sites in 5 genes were significantly associated with the Cd content in rice grains, of which 8 alleles in OsPCR1, CAL1, and Oscd1 were negatively correlated with Cd accumulation. The results of haplotype aggregation analysis for OsPCR1, Oscd1, and CAL1 showed that 85 rice varieties were divided into 5 clusters. Interestingly, most of the varieties in Cluster A belonged to tropical type, which contained the aggregation of three favorable alleles, whereas the temperate varieties constituted the majority of Cluster B lacking favorable alleles. This observation suggests that the allelic combination found in tropical rice varieties may hold promise for reducing Cd accumulation levels in rice grains. The Cd-associated alleles identified in the present study can not only be used to check the Cd tolerance of rice varieties, but also serve as functional molecular markers to differentiate the source of the rice varieties, which provides a better understanding of the relationship between the sequence variation in Cd-related genes and Cd accumulation in rice.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Plants, MDPI AG, Vol. 12, No. 1 ( 2022-12-29), p. 156-
    Abstract: The extent of molecular diversity and differentially expressed proteins (DEPs) in transgenic lines provide valuable information to understand the phenotypic performance of transgenic crops compared with their parents. Here, we compared the differences in the phenotypic variation of twelve agronomic and end-use quality traits, the extent of microsatellite diversity, and DEPs of a recurrent parent line with three transgenic rice restorer lines carrying either CRY1C gene on chromosome 11 or CRY2A gene on chromosome 12 or both genes. The three transgenic lines had significantly smaller stem borer infestation than the recurrent parent without showing significant differences among most agronomic traits, yield components, and end-use quality traits. Using 512 microsatellite markers, the three transgenic lines inherited 2.9–4.3% of the Minghui 63 donor genome and 96.3–97.1% of the CH891 recurrent parent genome. As compared with the recurrent parent, the number of upregulated and down-regulated proteins in the three transgenic lines varied from 169 to 239 and from 131 to 199, respectively. Most DEPs were associated with the secondary metabolites biosynthesis transport and catabolism, carbohydrate transport and metabolism, post-translational modification, and signal transduction mechanisms. Although several differentially expressed proteins were observed between transgenic rice and its recurrent parent, the differences may not have been associated with grain yield and most other phenotypic traits in transgenic rice.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...