GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (167)
Material
Publisher
  • MDPI AG  (167)
Language
Years
  • 11
    In: Cancers, MDPI AG, Vol. 10, No. 12 ( 2018-12-14), p. 516-
    Abstract: Stereotactic body radiotherapy (SBRT) has shown promising results in the control of macroscopic vascular invasion in patients with hepatocellular carcinoma (HCC); however, its efficacy in comparison to sorafenib when combined with transarterial chemoembolization (TACE) remains to be determined. Between 2009 and 2017, 77 HCC patients with macroscopic vascular invasion receiving TACE–SBRT or TACE–sorafenib combination therapies were enrolled. The best treatment responses, overall survival (OS), and progression-free survival (PFS) of the two treatment arms were compared. Of the patients enrolled, 26 patients (33.8%) received TACE–SBRT treatment, and 51 (66.2%) received TACE–sorafenib treatment. The patients in the TACE–SBRT group were more frequently classified as elder in age (p = 0.012), having recurrent disease (p = 0.026), and showing lower rates of multiple hepatic lesions (p = 0.005) than patients in TACE–sorafenib group. After propensity score matching (PSM), 26 pairs of well-matched HCC patients were selected; patients in the TACE–SBRT group showed better overall response rates in trend compared to those in the TACE–sorafenib group. The hazard ratio (HR) of OS to PFS for the TACE–SBRT approach and the TACE–sorafenib approach was 0.36 (95% CI, 0.17–0.75; p = 0.007) and 0.35 (95% CI, 0.20–0.62; p 〈 0.001), respectively. For HCC patients with macrovascular invasion, TACE plus SBRT could provide improved OS and PFS compared to TACE–sorafenib therapy.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    In: Sensors, MDPI AG, Vol. 21, No. 21 ( 2021-10-29), p. 7213-
    Abstract: This paper proposes a parameter identification method for the multiparameter identification study of the linear–arch composite beam piezoelectric energy harvester. According to the voltage response characteristics of the system under short-circuit conditions, the mechanical equation is solved by transient excitation, combined with the backbone curve theory and logarithmic attenuation method, to obtain the system’s linear damping, linear stiffness, and nonlinear stiffness. According to the voltage response characteristics of the system under open-circuit conditions, combined with the electrical equations, the system electromechanical coupling coefficient and equivalent capacitance coefficient are obtained; numerical simulation results show that the identification parameters have good accuracy. Finally, an experimental platform was built for verification, and the results show that the method has high accuracy and practicability.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Systems Vol. 11, No. 3 ( 2023-03-21), p. 161-
    In: Systems, MDPI AG, Vol. 11, No. 3 ( 2023-03-21), p. 161-
    Abstract: The greening of financial markets can effectively guide the flow of capital to green and environmental industries, prompt the upgrading and transformation of the green industry, and help China achieve its dual carbon goals. This paper adopts China’s inter-provincial panel data from 2011 to 2020, measures the development level of the real economy in terms of innovation, coordination, green, openness, and sharing using principal component analysis, and selects core indicators such as green credit, green insurance, green investment, and financial market size. In addition, the fixed panel model and differences-in-differences model are used to carry out the research. The results show that: 1. China’s high-quality green development shows an upward trend in general, the real economy tends to be green, and the development in the east, middle, and west is gradually balanced; 2. Green credit and green insurance have a significant inhibitory effect on the development of the real economy, and this inhibitory effect is more evident in the middle and western regions; green investment has a significant positive promotion effect on promoting the development of the real economy; 3. The promulgation and implementation of policies such as the Guidance on Building a Green Financial System can significantly promote the greening of the financial market to the real economy and promote sustainable development. It should continue to promote the greening of the financial market, improve the green financial service system, smooth the transformation path of green finance to the real economy, strengthen the green guidance of the government on the development of the virtual and real economy, promote the green synergistic development of the financial market in the east and west, and promote the high-quality green sustainable development of the region.
    Type of Medium: Online Resource
    ISSN: 2079-8954
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2663185-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    In: Applied Sciences, MDPI AG, Vol. 12, No. 3 ( 2022-01-31), p. 1545-
    Abstract: Train speed is increasing due to the development of high-speed railway technology. However, high-speed trains generate more noise and discomfort for residents, enclosed housing for sound emission alleviation is needed to further reduce noise. Because these enclosed housings for sound emission alleviation restrain the air flow, strong and complicated aerodynamic pressures are generated inside the housing for sound emission alleviation when a train passes through at a high speed. This train-induced aerodynamic pressure, particularly its dynamic characteristics, is a key parameter in structural design. In the present study, the train-induced unsteady aerodynamic pressure in an enclosed housing for sound emission alleviation is simulated using the dynamic mesh method, and the dynamic characteristics of the aerodynamic pressure are investigated. The simulation results show that when the train is running in the enclosed housing for sound emission alleviation, the unsteady aerodynamic pressure is complicated and aperiodic, and after the train leaves the housing for sound emission alleviation, the aerodynamic pressure reverts to periodic decay curves. Two new terms, the duration of the extreme aerodynamic pressure and the pressure change rate, are proposed to evaluate the dynamic characteristics when the train passes through the barrier. The dominant frequency and decay rate are adopted to express the dynamic characteristics after the train exits. When the train runs in the enclosed housing for sound emission alleviation, the longest durations of the positive and negative extreme aerodynamic pressures are in the middle section, and the maximum change rate of aerodynamic pressure occurs at the entrance area. After the train exits the housing for sound emission alleviation, the pressure amplitude at the central region is always higher than those close to the entrance/exit. The dominant frequency of the aerodynamic pressure is identified and explained using wave propagation theory, the decay rate of the aerodynamic pressure at all sections is close.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    In: Agronomy, MDPI AG, Vol. 12, No. 10 ( 2022-10-10), p. 2454-
    Abstract: Due to rainfall, closed weeding of paddy fields and other reasons, submergence stress often occurs during the germination and emergence stages of direct-seeded rice (Oryza sativa L.), which leads to intensified anaerobic respiration, accelerated consumption of stored nutrients, difficulty in germination of rice seeds, uneven emergence of seedlings and varying yields. Recent advances in the understanding of phytohormone interaction and the regulation of signaling pathways in crops have increased the feasibility of modulating responses to phytohormones in crop plants to enhance adaptation to environmental changes. In this review, we summarize recent advances and progress in the understanding of the regulation of phytohormone signaling pathways and their interactions with diverse internal and external signaling cues under submergence. We also discuss how these physiological modulations of phytohormones and their abundant signaling crosstalk can be applied to enhance the submergence tolerance of direct-seeded rice during germination through the manipulation of seedling morphogenesis and the fine-tuning of stress responses. Finally, we discuss how complex phytohormone signaling pathways could regulate the metabolism of stored nutrients, anaerobic respiration and energy supply in submerged direct-seeded rice seeds, thereby improving their submergence tolerance. This review hopes to provide a basis for studies of the tolerance mechanisms of submerged direct-seeded rice and the promotion of the simplified direct-seeded rice cultivation model.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    In: Coatings, MDPI AG, Vol. 8, No. 11 ( 2018-11-12), p. 397-
    Abstract: A chemical conversion coating on 5052 aluminum alloy was prepared by using K2ZrF6 and K2TiF6 as the main salts, KMnO4 as the oxidant and NaF as the accelerant. The surface morphology, structure and composition were analyzed by SEM, EDS, FT–IR and XPS. The corrosion resistance of the conversion coating was studied by salt water immersion and polarization curve analysis. The influence of fluorosilane (FAS-17) surface modification on its antifouling property was also discussed. The results showed that the prepared conversion coating mainly consisted of AlF3·3H2O, Al2O3, MnO2 and TiO2, and exhibited good corrosion resistance. Its corrosion potential in 3.5 wt % NaCl solution was positively shifted about 590 mV and the corrosion current density was dropped from 1.10 to 0.48 μA cm−2. By sealing treatment in NiF2 solution, its corrosion resistance was further improved yielding a corrosion current density drop of 0.04 μA cm−2. By fluorosilane (FAS-17) surface modification, the conversion coating became hydrophobic due to low-surface-energy groups such as CF2 and CF3, and the contact angle reached 136.8°. Moreover, by FAS-17 modification, the corrosion resistance was enhanced significantly and its corrosion rate decreased by about 25 times.
    Type of Medium: Online Resource
    ISSN: 2079-6412
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2662314-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    In: Nanomaterials, MDPI AG, Vol. 11, No. 5 ( 2021-04-27), p. 1134-
    Abstract: A high performance humidity sensor using tilted fiber Bragg grating (TFBG) and functional graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) hybrid nano-materials was proposed. The humidity-sensitive material with three-dimensional (3D) structure was synthesized by the MWCNTs and GOs. Comparing with traditional two dimensional (2D) GOs film, water molecules could be absorbed effectively due to the larger ripples and more holes in GO/MWCNTs layers. The water molecule will fill the entire space in the 3D structure instead of air, which further enhances the absorption efficiency of the hybrid nanomaterial. TFBG as a compact and robust surrounding complex dielectric constant sensing platform was utilized. The mode coupling coefficient or the amplitude of TFBG cladding mode will vary sharply with the imaginary part of permittivity of the hybrid nanomaterial, realizing the high performance RH sensing. In the experiments, we successfully demonstrated that this 3D structural nanomaterial composed by the MWCNTs and GOs has significant advantages for expanding the range of humidity detection (range from 30% to 90%) and enhancing the detection sensitivity (0.377 dB/% RH is twice more than humidity sensor with 2D GO film). The TFBG-based RH sensor also exhibits good repeatability and stability. Our proposed humidity sensor has potential application in environmental and healthy monitoring fields.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    In: Buildings, MDPI AG, Vol. 11, No. 11 ( 2021-11-18), p. 558-
    Abstract: The fundamental notion of ‘smart’ in building materials discourse is responsiveness—the ability of materials to react to environmental stimuli by manifesting a noticeable physical change when there is a difference in the conditions of their immediate surroundings. This notion, however, is also interchanged with ‘intelligence’, which involves an array of control protocols. Notwithstanding, both notions are used synonymously and as occupant comfort and energy efficiency strategies in buildings. The current study aimed to underscore the fundamental issues in the conceptualization of both notions in building materials colloquy by systematic review of published literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 checklist. The review revealed that while smart responses are direct, predictable and reversible, requiring no external control system, computer systems and networks which require a constant supply of energy are essential for intelligence. In fact, the relationship between intelligent systems, energy efficiency and occupant comfort depends on external computer control and machine components of learning, resulting in complex systems with longer payback times, whereas smart materials and systems respond directly and immediately without additional energy or occupant control. The discussions present an attempt towards promoting zero additional energy demand for buildings using smart materials.
    Type of Medium: Online Resource
    ISSN: 2075-5309
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2661539-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  International Journal of Molecular Sciences Vol. 22, No. 2 ( 2021-01-11), p. 652-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 2 ( 2021-01-11), p. 652-
    Abstract: The calcium-binding protein spermatid-associated 1 (Cabs1) is a novel spermatid-specific protein. However, its function remains largely unknown. In this study, we found that a long noncoding RNA (lncRNA) transcripted from the Cabs1 gene antisense, AntiCabs1, was also exclusively expressed in spermatids. Cabs1 and AntiCabs1 knockout mice were generated separately (using Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas9 methods) to investigate their functions in spermatogenesis. The genetic loss of Cabs1 did not affect testicular and epididymal development; however, male mice exhibited significantly impaired sperm tail structure and subfertility. Ultrastructural analysis revealed defects in sperm flagellar differentiation leading to an abnormal annulus and disorganization of the midpiece–principal piece junction, which may explain the high proportion of sperm with a bent tail. Interestingly, the proportion of sperm with a bent tail increased during transit in the epididymis. Furthermore, Western blot and immunofluorescence analyses showed that a genetic loss of Cabs1 decreased Septin 4 and Krt1 and increased cyclin Y-like 1 (Ccnyl1) levels compared with the wild type, suggesting that Cabs1 deficiency disturbed the expression of cytoskeleton-related proteins. By contrast, AntiCabs1−/− mice were indistinguishable from the wild type regarding testicular and epididymal development, sperm morphology, concentration and motility, and male fertility. This study demonstrates that Cabs1 is an important component of the sperm annulus essential for proper sperm tail assembly and motility.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    In: Water, MDPI AG, Vol. 15, No. 2 ( 2023-01-05), p. 243-
    Abstract: In this study, the responses of Dissolved Air Flotation (DAF), sedimentation, and sand filtration treatment processes on feed water with varied algal concentrations were investigated, based on a technical–economic analysis using data collected from a drinking water treatment plant (DWTP) in Guangxi, China. Cost-effective drinking water treatment processes for water sources with varied algae concentrations were proposed. The results showed that DAF was able to achieve almost 95% removal efficiency, while sedimentation was only able to reach 90% under different Polyaluminum Chloride (PACl)/dry cell weight concentrations in the DWTP. When algae concentrations increase, switching from sedimentation to DAF reduces treatment costs as DAF is more efficient for algae removal, which extends the backwashing interval of sand filtration. The threshold of sedimentation/DAF switching also depends on the quality requirement of the treated water. The lower the algae concentration in the treated water, the earlier the switch should be made from sedimentation to DAF. For instance, when the effluent thresholds are 1.2 mg·L−1, 0.8 mg·L−1, or 0.4 mg·L−1, DAF should be adopted instead of sedimentation—at feed algae concentrations of 43.9 mg·L−1, 31.5 mg·L−1, and 17.3 mg·L−1, respectively, in the raw water. The results set a baseline for a cost-effective drinking water treatment strategy based on a techno-economic model, which can precisely control the coagulation dosage and backwash interval of sand filtration coupled with sedimentation/DAF switching in algae-laden raw water.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...