GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (PDF-Datei: 41 Seiten = 2,5 MB)
    Language: German
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    MAIK Nauka/Interperiodica | Springer
    In:  Izvestiya, Atmospheric and Oceanic Physics, 50 (4). pp. 343-349.
    Publication Date: 2020-08-05
    Description: Numerical experiments with the ECHAM5 atmospheric general circulation model (AGCM) using the empirical HadISST1.1 data on sea surface temperature (SST) and sea ice concentration (SIC) in the 20th century as boundary conditions are analyzed. The experiments show that the model correctly reproduces the wintertime Arctic warming in the last 30 years of the 20th century but is unable to reproduce mid-20th century warming. Because the wintertime Arctic surface air temperature changes are closely related to SIC anomalies, it is assumed that one reason for this discrepancy is the lack of a negative SIC anomaly in the prescribed boundary conditions during a mid-20th century warm period. It is also shown that the model with-out prescribed ice cover changes does not reproduce a temperature trend in the Arctic in recent 30 years of the 20th century. The experimental results indicate that the mid-20th century warming was accompanied by a significant negative anomaly of the wintertime Arctic sea ice extent comparable to current trends and also point to a considerable contribution of natural variability to modern climate changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    MAIK Nauka/Interperiodica | Springer
    In:  Izvestiya, Atmospheric and Oceanic Physics, 52 (3). pp. 225-233.
    Publication Date: 2020-08-05
    Description: There were several anomalously cold winter weather regimes in Russia in the early 21st century. These regimes were usually associated with a blocking anticyclone south of the Barents Sea. Numerical simulations with an atmospheric general circulation model (AGCM) using prescribed sea-ice concentration (SIC) data for different periods during the last 50 years showed that a rapid sea-ice area decline in the Barents Sea in the last decade could bring about the formation of such a blocking anticyclone and cooling over northern Eurasia. The SIC reduction in the former period, from the second half of the 1960s to the first half of the 1990s, results in a weaker response of opposite sign. This suggests a nonlinear atmospheric circulation response to the SIC reduction in the Barents Sea, which has been previously found in the idealized AGCM simulations. An impact of the Barents Sea SIC reduction on the North Atlantic Oscillation (NAO), in particular, on the formation of the anomalously low NAO index, is found. The results indicate an important role that the Barents Sea, a region with the largest variability of the ocean–atmosphere heat exchange in the Arctic in wintertime, plays in generating anomalous weather regimes in Russia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  Climatic Change, 132 (4). pp. 489-500.
    Publication Date: 2017-12-19
    Description: Extraordinarily strong El Niño events, such as those of 1982/1983 and 1997/1998, cause havoc with weather around the world, adversely influence terrestrial and marine ecosystems in a number of regions and have major socio-economic impacts. Here we show by means of climate model integrations that El Niño events may be boosted by global warming. An important factor causing El Niño intensification is warming of the western Pacific warm pool, which strongly enhances surface zonal wind sensitivity to eastern equatorial Pacific sea surface temperature anomalies. This in conjunction with larger and more zonally asymmetric equatorial Pacific upper ocean heat content supports stronger and longer lasting El Niños. The most intense events, termed Super El Niños, drive extraordinary global teleconnections which are associated with exceptional surface air temperature and rainfall anomalies over many land areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    MAIK Nauka/Interperiodica | Springer
    In:  Izvestiya, Atmospheric and Oceanic Physics, 48 (4). pp. 355-372.
    Publication Date: 2020-08-05
    Description: Numerical experiments with the ECHAM5 atmospheric general circulation model have been performed in order to simulate the influence of changes in the ocean surface temperature (OST) and sea ice concentration (SIC) on climate characteristics in regions of Eurasia. The sensitivity of winter and summer climates to OST and SIC variations in 1998-2006 has been investigated and compared to those in 1968-1976. These two intervals correspond to the maximum and minimum of the Atlantic Long-Period Oscillation (ALO) index. Apart from the experiments on changes in the OST and SIC global fields, the experiments on OST anomalies only in the North Atlantic and SIC anomalies in the Arctic for the specified periods have been analyzed. It is established that temperature variations in Western Europe are explained by OST and SIC variations fairly well, whereas the warmings in Eastern Europe and Western Siberia, according to model experiments, are substantially (by a factor of 2-3) smaller than according to observational data. Winter changes in the temperature regime in continental regions are controlled mainly by atmospheric circulation anomalies. The model, on the whole, reproduces the empirical structure of changes in the winter field of surface pressure, in particular, the pressure decrease in the Caspian region; however, it substantially (approximately by three times) underestimates the range of changes. Summer temperature variations in the model are characterized by a higher statistical significance than winter ones. The analysis of the sensitivity of the climate in Western Europe to SIC variations alone in the Arctic is an important result of the experiments performed. It is established that the SIC decrease and a strong warming over the Barents Sea in the winter period leads to a cooling over vast regions of the northern part of Eurasia and increases the probability of anomalously cold January months by two times and more (for regions in Western Siberia). This effect is caused by the formation of the increased-pressure region with a center over the southern boundary of the Barents Sea during the SIC decrease and an anomalous advection of cold air masses from the northeast. This result indicates that, to estimate the ALO actions (as well as other long-scale climatic variability modes) on the climate of Eurasia, it is basically important to take into account (or correctly reproduce) Arctic sea ice changes in experiments with climatic models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...